Vanadium dioxide (VO) is a strongly correlated material that exhibits the insulator-to-metal transition (IMT) near room temperature, which makes it a promising candidate for applications in nanophotonics or optoelectronics. However, creating VO nanostructures with the desired functionality can be challenging due to microscopic inhomogeneities that can significantly impact the local optical and electronic properties. Thin lamellas, produced by focused ion beam milling from a homogeneous layer, provide a useful prototype for studying VO at the truly microscopic level using a scanning transmission electron microscope (STEM).
View Article and Find Full Text PDFOptical coupling between propagating light and confined surface polaritons plays a pivotal role in the practical design of nanophotonic devices. However, the coupling efficiency decreases dramatically with the degree of mode confinement due to the mismatch that exists between the light and polariton wavelengths, and despite the intense efforts made to explore different mechanisms proposed to circumvent this problem, the realization of a flexible scheme to efficiently couple light to polaritons remains a challenge. Here, we experimentally demonstrate an efficient coupling of light to surface-plasmon polaritons assisted by engineered dipolar scatterers placed at an optimum distance from the surface.
View Article and Find Full Text PDFWe demonstrate the formation of the near field with non-trivial phase distribution using surface plasmon interference devices, and experimental quantitative imaging of that phase with near-field phase microscopy. The phase distribution formed with a single device can be controlled by the polarization of the external illumination and the area of the device assigned to the object wave. A comparison of the experimental data to a numerical electromagnetic model and an analytical model assigns the origin of the near-field phase to the out-of-plane electric component of surface plasmon polaritons, and also verifies the predictive power of the models.
View Article and Find Full Text PDF