The interaction of water with different substances in the earth's atmosphere lies at the heart of many processes that influence our climate. However, it is still unclear how different species interact with water on the molecular level and in which ways this interaction contributes to the water vapor phase transition. Here, we report the first measurements of water-nonane binary nucleation in the 50-110 K temperature range, along with unary nucleation data of both.
View Article and Find Full Text PDFAbundance spectra of (CO) clusters up to ≈ 500 acquired under a wide range of adiabatic expansion conditions are analyzed within the evaporative ensemble framework. The analysis reveals that the cluster stability functions display a strikingly universal pattern for all expansion conditions. These patterns reflect the inherent properties of individual clusters.
View Article and Find Full Text PDFStudies of vapor phase nucleation have largely been restricted to one of two limiting cases-nucleation controlled by a substantial free energy barrier or the collisional limit where the barrier is negligible. For weakly bound systems, exploring the transition between these regimes has been an experimental challenge, and how nucleation evolves in this transition remains an open question. We overcome these limitations by combining complementary Laval expansion experiments, providing new particle formation data for carbon dioxide over a uniquely broad range of conditions.
View Article and Find Full Text PDFGas phase nucleation is a ubiquitous phenomenon in planetary atmospheres and technical processes, yet our understanding of it is far from complete. In particular, the enhancement of nucleation by the addition of a more volatile, weakly interacting gaseous species to a nucleating vapor has escaped molecular-level experimental investigation. Here, we use a specially designed experiment to directly measure the chemical composition and the concentration of nucleating clusters in various binary CO-containing vapors.
View Article and Find Full Text PDFMagic Size Clusters (MSCs) have been identified in the last few years as intermediates in the synthesis of nanocrystals (NCs), and ever since there has been increased interest in understanding their exact role in the NC synthesis. Many studies have been focused on understanding the influence of precursors or ligands on the stability of MSCs and on whether the presence of MSCs influences the reaction pathway. However, their kinetic nature calls for an in situ temporal evolution study of the reaction, from the first seconds until the formation of regular nanocrystals, in order to unravel the role of MSCs in the formation of NCs.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2020
We investigate homogeneous gas-phase nucleation of CO2 and C3H8 in the uniform postnozzle flow of Laval expansions in the temperature range of 31.2 K to 62.9 K and 32.
View Article and Find Full Text PDFWe utilize recently reported data for water nucleation in the uniform postnozzle flow of pulsed Laval expansions to derive water monomer association rates with clusters. The nucleation experiments are carried out at flow temperatures of 87.0 K and 47.
View Article and Find Full Text PDF