Publications by authors named "Jan Kodde"

Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom.

View Article and Find Full Text PDF

Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.

View Article and Find Full Text PDF

Seed aging during storage results in loss of vigor and germination ability due to the accumulation of damage by oxidation reactions. Experimental aging tests, for instance to study genetic variation, aim to mimic natural aging in a shorter timeframe. As the oxidation rate is increased by elevating the temperature, moisture, and oxygen levels, this study aimed to (1) investigate the effect of experimental rice seed aging by an elevated partial pressure of oxygen (EPPO), (2) elucidate the mechanism of dry-EPPO aging and (3) compare aging under dry-EPPO conditions to aging under traditional moist-controlled deterioration (CD) conditions and to long-term ambient storage.

View Article and Find Full Text PDF

Peanuts are transported by ship from production regions to all across the globe. Quality problems are frequently encountered due to increased levels of free fatty acids (FFAs) and a decline in organoleptic quality through lipid oxidation occurring during transport and storage. We studied the role of moisture (water activity, a) in interaction with 87 days hermetic storage under air or nitrogen gas.

View Article and Find Full Text PDF

Seed longevity (storability) is an important seed quality trait. High seed quality is important in agriculture, for the industry, and for safeguarding biodiversity as many species are stored as seeds in genebanks. To ensure ex-situ seed survival, seeds are mostly stored at low relative humidity and low temperature.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities.

View Article and Find Full Text PDF

Genebanks aim to optimize their storage conditions in order to postpone seed ageing as long as possible. As most genebanks have a relatively short life history, empirical data about seed longevity during storage are almost absent. Based on seed characteristics, theoretical predictions indicate that cereal seeds can be stored without substantial loss of viability for time periods exceeding 100 years, even under temperatures of a few degrees above zero.

View Article and Find Full Text PDF

Seed dormancy determines the timing of seed germination and may be released by dry storage, also referred to as after-ripening. Studies on dormancy-release mechanisms are often hampered by the long after-ripening requirements of seeds. After-ripening is thought to be mainly caused by oxidative processes during seed dry storage.

View Article and Find Full Text PDF

Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers.

View Article and Find Full Text PDF

Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the "elevated partial pressure of oxygen" (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure.

View Article and Find Full Text PDF

Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids.

View Article and Find Full Text PDF

Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics.

View Article and Find Full Text PDF

During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds.

View Article and Find Full Text PDF

Chicory (Cichorium intybus) sesquiterpene lactones were recently shown to be derived from a common sesquiterpene intermediate, (+)-germacrene A. Germacrene A is of interest because of its key role in sesquiterpene lactone biosynthesis and because it is an enzyme-bound intermediate in the biosynthesis of a number of phytoalexins. Using polymerase chain reaction with degenerate primers, we have isolated two sesquiterpene synthases from chicory that exhibited 72% amino acid identity.

View Article and Find Full Text PDF