Publications by authors named "Jan Klooster"

Biblical references aside, restoring vision to the blind has proven to be a major technical challenge. In recent years, considerable advances have been made towards this end, especially when retinal degeneration underlies the vision loss such as occurs with retinitis pigmentosa. Under these conditions, optogenetic therapies are a particularly promising line of inquiry where remaining retinal cells are made into "artificial photoreceptors".

View Article and Find Full Text PDF

The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling.

View Article and Find Full Text PDF

Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina.

View Article and Find Full Text PDF

The mammalian apical-basal determinant Crumbs homolog-1 (CRB1) plays a crucial role in retinal structure and function by the maintenance of adherens junctions between photoreceptors and Müller glial cells. Patients with mutations in the CRB1 gene develop retinal dystrophies, including early-onset retinitis pigmentosa and Leber congenital amaurosis. Previously, we showed that Crb1 knockout mice developed a slow-progressing retinal phenotype at foci in the inferior retina, although specific ablation of Crb2 in immature photoreceptors leads to an early-onset phenotype throughout the retina.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how different types of horizontal cells (HCs) in zebrafish retinas connect to photoreceptors, emphasizing the role of gap junctions and connexin (Cx) hemichannels in this process.
  • Researchers characterized various Cx types in Xenopus oocytes, finding differences in their properties that impact HC coupling and feedback signals to cones.
  • Morphological analysis using fluorescent proteins revealed specific Cx promoter activities in HCs, and functional tests showed different response types based on which photoreceptors the HCs connected to, suggesting a mechanism for processing spectral information under different lighting conditions.
View Article and Find Full Text PDF

Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba(2+)-sensitive K(+) inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K(+) inward current does not require oligodendrocytic Kir4.

View Article and Find Full Text PDF

Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors.

View Article and Find Full Text PDF
Article Synopsis
  • Vanishing white matter (VWM) is a lethal leukodystrophy caused by mutations in genes related to the translation initiation factor eIF2B, with disease severity influenced by genotype.
  • Research using mouse models and patient tissue revealed that abnormal maturation of white matter astrocytes occurs before the disease develops and correlates with its severity.
  • The study indicates that astrocytes play a crucial role in VWM progression and suggests they could be targeted for potential therapies, also highlighting their significance in other white matter disorders.
View Article and Find Full Text PDF

Mutations in the Crumbs-homologue-1 (CRB1) gene lead to severe recessive inherited retinal dystrophies. Gene transfer therapy is the most promising cure for retinal dystrophies and has primarily been applied for recessive null conditions via a viral gene expression vector transferring a cDNA encoding an enzyme or channel protein, and targeting expression to one cell type. Therapy for the human CRB1 disease will be more complex, as CRB1 is a structural and signaling transmembrane protein present in three cell classes: Müller glia, cone and rod photoreceptors.

View Article and Find Full Text PDF

Objective: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic disease characterized by infantile onset white matter edema and delayed onset neurological deterioration. Loss of MLC1 function causes MLC. MLC1 is involved in ion-water homeostasis, but its exact role is unknown.

View Article and Find Full Text PDF

The accessory outer segment, a cytoplasmic structure running alongside the photoreceptor outer segment, has been described in teleost fishes, excluding the model organism zebrafish. So far, the function of the accessory outer segment is unknown. Here, we describe the ultrastructure of the zebrafish cone accessory outer segment by electron microscopy.

View Article and Find Full Text PDF

Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement.

View Article and Find Full Text PDF

Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations.

View Article and Find Full Text PDF

In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and consequent removal from Müller glial and photoreceptor cells, results in severe and progressive retinal degeneration with concomitant loss of retinal function that mimics retinitis pigmentosa due to mutations in the CRB1 gene.

View Article and Find Full Text PDF

In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution.

View Article and Find Full Text PDF

Purpose: Complete congenital stationary night blindness (CSNB1) is characterized by loss of night vision due to a defect in the retinal ON-bipolar cells (BCs). Mutations in GPR179, encoding the G-protein-coupled receptor 179, have been found in CSNB1 patients. In the mouse, GPR179 is localized to the tips of ON-BC dendrites.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes and microglia undergo changes in both function and gene expression as they age, which may contribute to neurological disorders.
  • Aged astrocytes display increased inflammation and zinc ion binding, while young astrocytes have higher levels of genes linked to neuronal development and hemoglobin synthesis.
  • Aged microglia show heightened expression of genes related to vesicle release and inflammation, whereas young microglia express more C-C motif chemokines, providing a comprehensive gene profile for both cell types in aging.
View Article and Find Full Text PDF

MPP3 and CRB1 both interact directly with PALS1/MPP5 and through this scaffold protein may form a large protein complex. To investigate the role of MPP3 in the retina we have analyzed conditional mutant Mpp3 knockout mice. Ultrastructural localization studies revealed that MPP3 is predominantly localized in apical villi of Müller glia cells.

View Article and Find Full Text PDF

Background: Mutant mouse models suggest that the chloride channel ClC-2 has functions in ion and water homoeostasis, but this has not been confirmed in human beings. We aimed to define novel disorders characterised by distinct patterns of MRI abnormalities in patients with leukoencephalopathies of unknown origin, and to identify the genes mutated in these disorders. We were specifically interested in leukoencephalopathies characterised by white matter oedema, suggesting a defect in ion and water homoeostasis.

View Article and Find Full Text PDF

During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex.

View Article and Find Full Text PDF

The membrane-associated palmitoylated protein 5 (MPP5 or PALS1) is thought to organize intracellular PALS1-CRB-MUPP1 protein scaffolds in the retina that are involved in maintenance of photoreceptor-Müller glia cell adhesion. In humans, the Crumbs homolog 1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. However, there is no clear genotype-phenotype correlation for CRB1 mutations, which suggests that other components of the CRB complex may influence the severity of retinal disease.

View Article and Find Full Text PDF

Purpose: Transient receptor potential subfamily melastatin (TRPM)1 cation channels of retinal ON-bipolar cells are modulated via a mGluR6 (GMR6) signaling cascade. While light-microscopy shows these channels are located on the tips of ON-bipolar cells dendrites, near rod and cone synaptic ribbons, TRPM1 localization at the electron-microscope level is currently not described. The authors report here the ultrastructural localization of TRPM1 in the human retina.

View Article and Find Full Text PDF

In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons.

View Article and Find Full Text PDF

Background: Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca(2+)-current) in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca(2+)-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism.

View Article and Find Full Text PDF

L-Glutamate, the photoreceptor neurotransmitter, depolarizes horizontal cells and OFF-bipolar cells by ionotropic receptors and hyperpolarizes ON-bipolar cells by metabotropic receptors. Despite extensive light microscopy on the distribution of glutamate receptors in zebrafish retina, there are little ultrastructural data. Given the importance of zebrafish in studies on the genetic manipulation of retinal development and function, precise data on the synaptic neurochemical organization of the zebrafish retina is needed.

View Article and Find Full Text PDF