Publications by authors named "Jan Kaufmann"

Introduction: Atherosclerosis is the underlying cause of multiple cardiovascular pathologies. The present-day clinical imaging modalities do not offer sufficient information on plaque composition or rupture risk. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a strongly upregulated proteoglycan-cleaving enzyme that is specific to cardiovascular diseases, inter alia, atherosclerosis.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory condition of the arteries and represents the primary cause of various cardiovascular diseases. Despite ongoing progress, finding effective anti-inflammatory therapeutic strategies for atherosclerosis remains a challenge. Here, we assessed the potential of molecular magnetic resonance imaging (MRI) to visualize the effects of 01BSUR, an anti-interleukin-1β monoclonal antibody, for treating atherosclerosis in a murine model.

View Article and Find Full Text PDF

The affinity constant, also known as the equilibrium constant, binding constant, equilibrium association constant, or the reciprocal value, the equilibrium dissociation constant (K), can be considered as one of the most important characteristics for any antibody-antigen pair. Many methods based on different technologies have been proposed and used to determine this value. However, since a very large number of publications and commercial datasheets do not include this information, significant obstacles in performing such measurements seem to exist.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system.

View Article and Find Full Text PDF

The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties.

View Article and Find Full Text PDF

Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3.

View Article and Find Full Text PDF

The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture.

View Article and Find Full Text PDF

Human prostate cancer (PCa) is a type of malignancy and one of the most frequently diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is involved in the structure and organization of prostate tissue. The present study examined prostate cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance molecular imaging.

View Article and Find Full Text PDF

Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis.

View Article and Find Full Text PDF

Background: Currently, there is no reliable nonsurgical treatment for abdominal aortic aneurysm (AAA). This study, therefore, investigates if doxycycline reduces AAA growth and the number of rupture-related deaths in a murine ApoE-/- model of AAA and whether gadofosveset trisodium-based MRI differs between animals with and without doxycycline treatment.

Methods: Nine ApoE-/- mice were implanted with osmotic minipumps continuously releasing angiotensin II and treated with doxycycline (30 mg/kg/d) in parallel.

View Article and Find Full Text PDF

This review summarizes recent developments regarding molecular imaging markers for magnetic resonance imaging (MRI) of prostate cancer (PCa). Currently, the clinical standard includes MR imaging using unspecific gadolinium-based contrast agents. Specific molecular probes for the diagnosis of PCa could improve the molecular characterization of the tumor in a non-invasive examination.

View Article and Find Full Text PDF

To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences.

View Article and Find Full Text PDF

Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) remains a fatal disease. Its development encompasses a complex interplay between hemodynamic stimuli on and changes in the arterial wall. Currently available biomarkers fail to predict the risk of AAA rupture independent of aneurysm size.

View Article and Find Full Text PDF

Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy.

View Article and Find Full Text PDF

Purpose: Restoration of sinus rhythm in patients with persistent atrial fibrillation (ps. AF) induces reverse atrial remodeling and improvement of left ventricular function. We evaluated the effect of ablative treatment on cardiac remodeling after a long follow-up period of 7 years by cardiovascular magnetic resonance (CMR).

View Article and Find Full Text PDF

Background: Molecular magnetic resonance imaging is a promising modality for the characterization of abdominal aortic aneurysms (AAAs). The combination of different molecular imaging biomarkers may improve the assessment of the risk of rupture. This study investigates the feasibility of imaging inflammatory activity and extracellular matrix degradation by concurrent dual-probe molecular magnetic resonance imaging in an AAA mouse model.

View Article and Find Full Text PDF

Objectives: The aim of this study was to test the potential of a new elastin-specific molecular agent for the performance of contrast-enhanced first-pass and 3D magnetic resonance angiography (MRA), compared to a clinically used extravascular contrast agent (gadobutrol) and based on clinical MR sequences.

Materials And Methods: Eight C57BL/6J mice (BL6, male, aged 10 weeks) underwent a contrast-enhanced first-pass and 3D MR angiography (MRA) of the aorta and its main branches. All examinations were on a clinical 3 Tesla MR system (Siemens Healthcare, Erlangen, Germany).

View Article and Find Full Text PDF

Background: Target temperature management (TTM) after cardiac arrest (CA) improves outcome in patients with acute coronary syndrome (ACS). Previous data point to an interaction between hypothermia and drug metabolism, potentially impacting on platelet function in patients on antiplatelet therapy.

Purpose: To compare clopidogrel metabolism and platelet function in clopidogrel naïve ACS patients treated with TTM (33°C, n=15) and in ACS patients (troponin positive) without TTM (n=18).

View Article and Find Full Text PDF

Background: Precise knowledge of the coronary sinus (CS) tree anatomy facilitates catheter-based intubation of the CS, target vein and lead selection and reduces the need for fluoroscopy, contrast medium and overall procedure time in cardiac resynchronization therapy (CRT). Three-dimensional rotational angiography (3DRA) provides a new means of multiangle imaging of the CS tree that can be applied preoperatively.

Purpose And Methods: Our study aims to investigate the feasibility of preoperative rotational CS venography and its implications for CRT device implantation procedures.

View Article and Find Full Text PDF