Histone deacetylase enzymes (HDACs) are responsible for the global silencing of tumour-suppressor genes. Treatment with a histone deacetylase inhibitor (HDACi) can reverse this process and restore normal cell function. Herein, we report a small series of boron-based (boronic acid, boronate ester and closo-1,2-carborane) HDAC2 inhibitors with IC values in the nanomolar range.
View Article and Find Full Text PDFNovel boron-rich, carboranyl-indole carboxamide ligands were prepared and found to effectively target the 18 kDa translocator protein (TSPO), an upregulated mitochondrial membrane-bound protein which has been observed in variety of tumor cell lines and its expression appears to be proportional to the degree of tumorigenicity, emphasizing a key role in cancer cell proliferation. Both boronated compounds displayed remarkably high affinities for the TSPO. In addition, the in vitro uptake of these compounds into T98G human glioma cells was found to be 25- to 100-fold greater than that of clinical boron neutron capture therapy (BNCT) agents.
View Article and Find Full Text PDFWe report the first example of an ionic graphene salt containing boron. An anionic charge is introduced to the graphene surface by means of 7,8-nido-[C2B9H11](-) carborane clusters covalently and electronically bound to the graphene lattice, and this new material was isolated as its Cs(+) salt.
View Article and Find Full Text PDFTwo C-dimesitylboryl-1,2-dicarba-closo-dodecaboranes, 1-(BMes2)-2-R-1,2-C2B10H10 (1, R = H, 2, R = Ph), were synthesised by lithiation of 1,2-dicarba-closo-dodecaborane and 1-phenyl-1,2-dicarba-closo-dodecaborane, respectively, with n-butyllithium and subsequent reaction with fluorodimesitylborane. These novel compounds were structurally characterised by X-ray crystallography. Compounds 1 and 2 are hydrolysed on prolonged exposure to air to give mesitylene and boronic acids 1-(B(OH)2)-2-R-1,2-C2B10H10 (3, R = H, 4, R = Ph respectively).
View Article and Find Full Text PDFThe conjugated aromatic system of graphene was used to trap the reactive, boron-rich 1,2-carborane cluster. Functionalization of the graphene surface was confirmed by solid-state MAS (11)B NMR spectroscopy and quantified by X-ray photoelectron spectroscopy. This work represents the first confirmed example of direct functionalization of a graphene lattice with carboranes.
View Article and Find Full Text PDFIndoleamine-2,3-dioxygenase-1 (IDO1) is a critical immunoregulatory enzyme responsible for the metabolism of tryptophan during inflammation and disease. Based upon a pyranonaphthoquinone framework, the first examples of indoleamine-2,3-dioxygenase-1 (IDO1) inhibitors containing a carborane cage are reported. The novel closo-1,2-carboranyl-N-pyranonaphthoquinone derivatives display low μM binding affinity for the human recombinant enzyme, with IC50 values ranging from 0.
View Article and Find Full Text PDFWhile carboranes with 2 n+2 and 2 n+4 (n=number of skeletal atoms) skeletal electrons (SE) are widely known, little has been reported on carboranes with odd SE numbers. Electrochemical measurements on two-cage assemblies, where two C-phenyl-ortho-carboranyl groups are linked by a para-phenylene or a para-tetrafluorophenylene bridge, revealed two well separated and reversible two-electron reduction waves indicating formation of stable dianions and tetraanions. The salts of the dianions were isolated by reduction with sodium metal and their unusual structures were determined by X-ray crystallography.
View Article and Find Full Text PDFSix new C,C'-bis(benzodiazaborolyl)dicarba-closo-dodecaboranes, 1,A-R2-1,A-C2B10H10, where R represents the group 2-(1,3-Et2-1,3,2-N2BC6H4) or 2-(1,3-Ph2-1,3,2-N2BC6H4) and A is 2, 7 or 12, were synthesized from o-, m-, and p-dicarbadodecaboranes (carboranes) by lithiation and subsequent treatment with the respective 2-bromo-1,3,2-benzodiazaboroles. UV-visible and fluorescence spectra of all carboranes display low energy charge transfer emissions. While such emissions with Stokes shifts between 17,330 and 21,290 cm(-1) are typical for C,C'-bis(aryl)-ortho-carboranes, the observed low-energy emissions with Stokes shifts between 8320 and 15,170 cm(-1) for the meta- and para-isomers are unusual as high-energy emissions are typical for meta- and para-dicarbadodecaboranes.
View Article and Find Full Text PDFInt J Biochem Cell Biol
July 2013
The translocator protein (TSPO) is an 18 kDa transmembrane protein primarily found in the outer mitochondrial membrane where it forms a key part of the mitochondrial permeability transition pore (MPTP). Omnipresent in almost all tissues, TSPO up-regulation has been connected to neuronal damage and inflammation, making the protein an important bio-imaging marker for disease progression. More recently, TSPO has attracted attention as a possible molecular target for tumour imaging and chemotherapy.
View Article and Find Full Text PDFFifteen C-diazaborolyl-ortho-carboranes, 1-R'-2-R''-1,2-C(2)B(10)H(10), where R' represents the groups 2-(1,3-Et(2)-1,3,2-N(2)BC(6)H(4))-, 2-(1,3-Ph(2)-1,3,2-N(2)BC(6)H(4))-, 2-(1,3-Ph(2)-5,6-Me(2)-1,3,2-N(2)BC(6)H(2))-, 2-(1,3-(i)Pr(2)-1,3,2-N(2)BC(6)H(4))-, and 2-(1,3,2-N(2)BC(6)H(6))- and where R'' is H, Me, Ph, (t)Bu or SiMe(3), were synthesized. Cyclic voltammetry studies of the compounds showed irreversible oxidation waves which are caused by the oxidation of the heterocycle. Those C-diazaborolyl-ortho-carboranes with Ph, tBu and SiMe(3) substituents at the adjacent C-atom of the cage displayed two one-electron reduction waves reflecting the formation of stable radical monoanions with unusual (2n + 3) skeletal electron counts.
View Article and Find Full Text PDFTwo linear π-conjugated systems with 1,3-diethyl-1,3,2-benzodiazaborolyl [C(6)H(4)(NEt)(2)B-] as a donor group and dimesitylboryl (-BMes(2)) as acceptor were synthesised with -ethynylene-phenylene- (-C≡C-1,4-C(6)H(4)-, 3) and -ethynylene-thiophene- (-C≡C-2,5-C(4)H(2)S-12) bridges between the boron atoms. An assembly (20) consisting of two diazaborolyl-ethynylene-phenylene-boryl units, [C(6)H(4)(NCy)(N')B-C≡C-1,4-C(6)H(4)-BMes(2)] joined via a 1,4-phenylene unit at the nitrogen atoms (N') of the diazaborolyl units was also synthesised. The three push-pull systems, 3, 12 and 20, form salts on fluoride addition with the BMes(2) groups converted into (BMes(2)F)(-) anions.
View Article and Find Full Text PDFSeven derivatives of 1,2-dicarbadodecaborane (ortho-carborane, 1,2-C(2)B(10)H(12)) with a 1,3-diethyl- or 1,3-diphenyl-1,3,2-benzodiazaborolyl group on one cage carbon atom were synthesized and structurally characterized. Six of these compounds showed remarkable low-energy fluorescence emissions with large Stokes shifts of 15100-20260 cm(-1) and quantum yields (Φ(F)) of up to 65% in the solid state. The low-energy fluorescence emission, which was assigned to a charge-transfer (CT) transition between the cage and the heterocyclic unit, depended on the orientation (torsion angle, ψ) of the diazaborolyl group with respect to the cage C-C bond.
View Article and Find Full Text PDF