Competing short-range attractive (SA) and long range repulsive (LR) particle interactions can be used to describe three-dimensional charge-stabilized colloid or protein dispersions at low added salt concentrations, as well as membrane proteins with interaction contributions mediated by lipid molecules. Using Langevin dynamics (LD) simulations, we determine the generalized phase diagram, cluster shapes and size distributions of a generic quasi-two-dimensional (Q2D) dispersion of spherical SALR particles confined to in-plane motion inside a bulk fluid. The SA and LR interaction parts are modelled by a generalized Lennard-Jones potential and a screened Coulomb potential, respectively.
View Article and Find Full Text PDFCluster crystals are periodic structures with lattice sites occupied by several, overlapping building blocks, featuring fluctuating site occupancy, whose expectation value depends on thermodynamic conditions. Their assembly from atomic or mesoscopic units is long-sought-after, but its experimental realization still remains elusive. Here, we show the existence of well-controlled soft matter cluster crystals.
View Article and Find Full Text PDFDouble-stranded DNA (dsDNA) fragments exhibit noncovalent attractive interactions between their tips. It is still unclear how DNA liquid crystal self-assembly is affected by such blunt-end attractions. It is demonstrated that stiff dsDNA fragments with moderate aspect ratio can specifically self-assemble in concentrated aqueous solutions into different types of smectic mesophases on the basis of selectively screening of blunt-end DNA stacking interactions.
View Article and Find Full Text PDFWe present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids A and B of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and agree with those of single-phase isotropic MPC fluids.
View Article and Find Full Text PDFAdding shape and interaction anisotropy to a colloidal particle offers exquisitely tunable routes to engineer a rich assortment of complex-architected structures. Inspired by the hierarchical self-assembly concept with block copolymers and DNA liquid crystals and exploiting the unique assembly properties of DNA, we report here the construction and self-assembly of DNA-based soft-patchy anisotropic particles with a high degree of modularity in the system's design. By programmable positioning of thermoresponsive polymeric patches on the backbone of a stiff DNA duplex with linear and star-shaped architecture, we reversibly drive the DNA from a disordered ensemble to a diverse array of long-range ordered multidimensional nanostructures with tunable lattice spacing, ranging from lamellar to bicontinuous double-gyroid and double-diamond cubic morphologies, through the alteration of temperature.
View Article and Find Full Text PDFIn this study, we investigated the thermodiffusion behavior of a colloidal model system as a function of the Debye length, λ, which is controlled by the ionic strength. Our system consists of an fd-virus grafted with poly(ethylene glycol) (PEG) with a molecular mass of 5000 g mol. The results are compared with recent measurements on a bare fd-virus and with results of PEG.
View Article and Find Full Text PDFWe performed total internal reflection microscopy (TIRM) experiments to determine the depletion potentials between probe spheres and a flat glass wall which are induced by long and thin, rod-shaped colloids (fd-virus), and probe the spatially resolved dynamics of the probe spheres. The dynamic information from the same raw TIRM intensity time traces is extracted in three different ways: by determining the spatially averaged diffusion constant of the probe sphere normal to the wall, by measuring the position dependence of the diffusion coefficient, and by measuring the particle's local drift velocity. Up to a concentration of about 6 times the overlap concentration of the rod-like colloids, the spatially averaged diffusion coefficient and the amplitude of the depletion potential are in surprisingly good agreement with theoretical predictions in which mutual interactions between the rods are neglected, that is, where the concentration is less than the overlap concentration.
View Article and Find Full Text PDFLinear flow dichroism is shown to be a powerful tool to characterize the hydrodynamic dimensions of extremely small nonspherical colloids in solution. Dispersions of prolate and oblate quantum dots (QDs) are employed to investigate the validity of flow dichroism as a characterization tool. Shape-anisotropic QDs are important from an application perspective, where it is necessary to have a good knowledge of their hydrodynamic dimensions to predict and control their orientation during solution processing.
View Article and Find Full Text PDFIn recent years, the response of biomolecules to a temperature gradient has been utilized to monitor reactions of biomolecules, but the underlying mechanism is not well understood due to the complexity of the multicomponent system. To identify some underlying principles, we investigate the thermal diffusion of small amide molecules in water systematically. We re-analyze previous measurements of urea and formamide and compare the results with acetamide, N-methylformamide, and N,N-dimethylformamide, amides with a lower hydrophilicity.
View Article and Find Full Text PDFDispersions of particles with short-range attractive and long-range repulsive interactions exhibit rich equilibrium microstructures and a complex phase behavior. We present theoretical and simulation results for structural and, in particular, short-time diffusion properties of a colloidal model system with such interactions, both in the dispersed-fluid and equilibrium-cluster phase regions. The particle interactions are described by a generalized Lennard-Jones-Yukawa pair potential.
View Article and Find Full Text PDFTemperature gradient-induced migration of biomolecules, known as thermophoresis or thermodiffusion, changes upon ligand binding. In recent years, this effect has been used to determine protein-ligand binding constants. The mechanism through which thermodiffusive properties change when complexes are formed, however, is not understood.
View Article and Find Full Text PDFSmectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, despite the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase.
View Article and Find Full Text PDFWe present a comprehensive study of cross-flow ultrafiltration (UF) of charge-stabilized suspensions, under low-salinity conditions of electrostatically strongly repelling colloidal particles. The axially varying permeate flux, near-membrane concentration-polarization (CP) layer and osmotic pressure profiles are calculated using a macroscopic diffusion-advection boundary layer method, and are compared with filtration experiments on aqueous suspensions of charge-stabilized silica particles. The theoretical description based on the one-component macroion fluid model (OCM) accounts for the strong influence of surface-released counterions on the renormalized colloid charge and suspension osmotic compressibility, and for the influence of the colloidal hydrodynamic interactions and electric double layer repulsion on the concentration-dependent suspension viscosity η, and collective diffusion coefficient Dc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2016
Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351].
View Article and Find Full Text PDFIn this article we report on a study of the near-wall dynamics of suspended colloidal hard spheres over a broad range of volume fractions. We present a thorough comparison of experimental data with predictions based on a virial approximation and simulation results. We find that the virial approach describes the experimental data reasonably well up to a volume fraction of ϕ≈ 0.
View Article and Find Full Text PDFSoft colloids--such as polymer-coated particles, star polymers, block-copolymer micelles, microgels--constitute a broad class of materials where microscopic properties such as deformability and penetrability of the particle play a key role in tailoring their macroscopic properties which is of interest in many technological areas. The ability to access these microscopic properties is not yet demonstrated despite its great importance. Here we introduce novel DNA-coated colloids with star-shaped architecture that allows accessing the above local structural information by directly visualizing their intramolecular monomer density profile and arm's free-end locations with confocal fluorescent microscopy.
View Article and Find Full Text PDFFlow-induced instabilities that lead to non-uniform stationary flow profiles have been observed in many different soft-matter systems. Two types of instabilities that lead to banded stationary states have been identified, which are commonly referred to as gradient- and vorticity-banding. The molecular origin of these instabilities is reasonably well understood.
View Article and Find Full Text PDFWe present a study of the structure and rheology of mixed suspensions of montmorillonite clay platelets and Ludox TMA silica spheres at pH 5, 7, and 9. Using cryogenic transmission electron microscopy (cryo-TEM), we probe the changes in the structure of the montmorillonite suspensions induced by changing the pH and by adding silica particles. Using oscillatory and transient rheological measurements, we examine the changes in storage modulus and yield stress of the montmorillonite suspensions upon changing the pH and adding silica particles.
View Article and Find Full Text PDFIn this article we extend recent experimental developments [Rogers et al., Phys. Rev.
View Article and Find Full Text PDFThe response of concentrated dispersions of charged colloids to low-frequency electric fields is governed by field-induced inter-colloidal interactions resulting from the polarization of electric double layers and the layer of condensed ions, association and dissociation of condensed ions, as well as hydrodynamic interactions through field-induced electro-osmotic flow. The phases and states that can be formed by such field-induced interactions are an essentially unexplored field of research. Experiments on concentrated suspensions of rod-like colloids (fd-virus particles), within the isotropic-nematic phase coexistence region, showed that a number of phases/states are induced, depending on the field amplitude and frequency [Soft Matter, 2010, 6, 273].
View Article and Find Full Text PDFThe self-assembly of nanoparticles triggered by attractive depletion forces presents a versatile pathway for building nanostructural superlattices directly in solution. In this work, the synthesis of squarelike lead chromate (PbCrO4) nanoplatelets is described, and their assembly into well-defined stacks by introducing various types of micelles as depletion agents is studied. The kinetics of the reversible assembly process in solution is probed by light scattering, and the depletion-induced self-assembly of the nanoplatelets is investigated by transmission electron microscopy.
View Article and Find Full Text PDFIn order to interpret measured intensity autocorrelation functions obtained in evanescent wave scattering, their initial decay rates have been analyzed recently [P. Holmqvist, J. K.
View Article and Find Full Text PDFParticle shape plays an important role in controlling the optical, magnetic, and mechanical properties of nanoparticle suspensions as well as nanocomposites. However, characterizing the size, shape, and the associated polydispersity of nanoparticles is not straightforward. Electron microscopy provides an accurate measurement of the geometric properties, but sample preparation can be laborious, and to obtain statistically relevant data many particles need to be analyzed separately.
View Article and Find Full Text PDFA semimicroscopic derivation is presented of equations of motion for the density and the flow velocity of concentrated systems of entangled polymers. The essential ingredient is the transient force that results from perturbations of overlapping polymers due to flow. A Smoluchowski equation is derived that includes these transient forces.
View Article and Find Full Text PDF