Publications by authors named "Jan Jedelsky"

The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies.

View Article and Find Full Text PDF

Controlled pulmonary drug delivery systems employing non-spherical particles as drug carriers attract considerable attention nowadays. Such anisotropic morphologies may travel deeper into the lung airways, thus enabling the efficient accumulation of therapeutic compounds at the point of interest and subsequently their sustained release. This study focuses on the fabrication of electrospun superparamagnetic polymer-based biodegradable microrods consisting of poly(l-lactide) (PLLA), polyethylene oxide (PEO) and oleic acid-coated magnetite nanoparticles (OA·FeO).

View Article and Find Full Text PDF

The inhalation route has a substantial influence on the fate of inhaled particles. An outbreak of infectious diseases such as COVID-19, influenza or tuberculosis depends on the site of deposition of the inhaled pathogens. But the knowledge of respiratory deposition is important also for occupational safety or targeted delivery of inhaled pharmaceuticals.

View Article and Find Full Text PDF

Medical aerosols are key elements of current chronic obstructive pulmonary disease (COPD) therapy. Therapeutic effects are conditioned by the delivery of the right amount of medication to the right place within the airways, that is, to the drug receptors. Deposition of the inhaled drugs is sensitive to the breathing pattern of the patients which is also connected with the patient's disease severity.

View Article and Find Full Text PDF

Recent developments in the prediction of local aerosol deposition in human lungs are driven by the fast development of computational simulations. Although such simulations provide results in unbeatable resolution, significant differences among distinct methods of calculation emphasize the need for highly precise experimental data in order to specify boundary conditions and for validation purposes. This paper reviews and critically evaluates available methods for the measurement of single and disperse two-phase flows for the study of respiratory airflow and deposition of inhaled particles, performed both in vivo and in replicas of airways.

View Article and Find Full Text PDF

Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e.

View Article and Find Full Text PDF

Researchers have been studying aerosol transport in human lungs for some decades. The overall lung deposition can be predicted with sufficient precision nowadays. However, the prediction of local deposition remains an unsolved problem.

View Article and Find Full Text PDF

In this article, the results of numerical simulations using computational fluid dynamics (CFD) and a comparison with experiments performed with phase Doppler anemometry are presented. The simulations and experiments were conducted in a realistic model of the human airways, which comprised the throat, trachea and tracheobronchial tree up to the fourth generation. A full inspiration/expiration breathing cycle was used with tidal volumes 0.

View Article and Find Full Text PDF

Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models.

View Article and Find Full Text PDF