Plant synaptotagmins structurally resemble animal synaptotagmins and extended-synaptotagmins. Animal synaptotagmins are well-characterized calcium sensors in membrane trafficking, and extended-synaptotagmins mediate lipid transfer at the endoplasmic reticulum-plasma membrane contact sites. Here, we characterize , which belongs to the six-member family in Arabidopsis.
View Article and Find Full Text PDFPlants, as sessile organisms, are subjected to diverse abiotic stresses, including salinity, desiccation, metal toxicity, thermal fluctuations, and hypoxia at different phases of plant growth. Plants can activate messenger molecules to initiate a signaling cascade of response toward environmental stresses that results in either cell death or plant acclimation. Nitric oxide (NO) is a small gaseous redox-active molecule that exhibits a plethora of physiological functions in growth, development, flowering, senescence, stomata closure and responses to environmental stresses.
View Article and Find Full Text PDFCalpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution.
View Article and Find Full Text PDFThe mechanistic basis by which boron (B) deprivation inhibits root growth via the mediation of root apical auxin transport and distribution remains elusive. This study showed that B deprivation repressed root growth of wild-type Arabidopsis seedlings, which was related to higher auxin accumulation (observed with DII-VENUS and DR5-GFP lines) in B-deprived roots. Boron deprivation elevated the auxin content in the root apex, coinciding with upregulation of the expression levels of auxin biosynthesis-related genes (TAA1, YUC3, YUC9, and NIT1) in shoots, but not in root apices.
View Article and Find Full Text PDFSYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (Φ), stomatal conductance and transpiration rate in both genotypes.
View Article and Find Full Text PDFIRON-REGULATED TRANSPORTER 1 (IRT1) is a central iron transporter responsible for the uptake of iron from the rhizosphere to root epidermal cells. This study uses immunohistochemistry, histochemistry, and fluorometry to show that this gene's promoter is also active in the aboveground parts, specifically in phloem companied cells. Promoter activity here was regulated by iron as it was in the roots.
View Article and Find Full Text PDFKey Message: In RH1/RH2 are GUCT-domain-containing DEAD-BOX RNA helicases localize to the nucleus. They are implicated in cell and tissue development in all stages of the moss life cycle.
Abstract: The DEAD-box-containing RNA helicase family encompasses a large and functionally important group of enzymes involved in cellular processes committed to the metabolism of RNA, including its transcription, processing, transport, translation and decay.
We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well.
View Article and Find Full Text PDFFluorescence proteins changing spectral properties after exposure to light with a specific wavelength have recently become outstanding aids in the study of intracellular protein dynamics. Herein we show using Arabidopsis SYNAPTOTAGMIN 1 as a model protein that the Dendra2 green to red photoconvertible protein tag in combination with confocal scanning laser microscopy is a useful tool to study membrane protein intracellular dynamics.
View Article and Find Full Text PDFBy using the photoconvertible fluorescence protein Dendra2 as a tag we demonstrated that neither the naturally occurring auxins indole-3-acetic acid and indole-3-butyric acid, nor the synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid nor compounds inhibiting polar auxin transport such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid, were able to inhibit endocytosis of the putative auxin transporter PIN-FORMED2 (PIN2) in Arabidopsis (Arabidopsis thaliana) root epidermis cells. All compounds, except Indole-3-butyric acid, repressed the recovery of the PIN2-Dendra2 plasma membrane pool after photoconversion when they were used in high concentrations. The synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid showed the strongest inhibition.
View Article and Find Full Text PDFThe dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes.
View Article and Find Full Text PDFArabidopsis synaptotagmin 2 (SYT2) has been reported to participate in an unconventional secretory pathway in somatic cells. Our results showed that SYT2 was expressed mainly in the pollen of Arabidopsis thaliana. The pollen of syt2 T-DNA and RNA interference mutant lines exhibited reduced total germination and impeded pollen tube growth.
View Article and Find Full Text PDFThe steady state level of integral membrane proteins is dependent on a strictly controlled delivery and removal. Here we show that Dendra2, a green-to-red photoconvertible fluorescent protein, is a suitable tool to study protein turnover in plants. We characterized the fluorescence properties of Dendra2 expressed either as a free protein or as a tag in Arabidopsis thaliana roots and optimized photoconversion settings to study protein turnover.
View Article and Find Full Text PDFNumb is an adaptor protein implicated in diverse basic cellular processes. Using the yeast-two hybrid system we isolated a novel Numb interactor in zebrafish called NBP which is an ortholog of human renal tumor suppressor Kank. NBP interacts with the PTB domain of Numb through a region well conserved among vertebrate Kanks containing the NGGY sequence.
View Article and Find Full Text PDFUnder blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone.
View Article and Find Full Text PDFβ-glucuronidase (GUS) is a useful reporter for the evaluation of promoter characteristics in transgenic plants. Here, we introduce an original technique to quantify the strength of promoters at subtissue resolution of cell clusters. The method combines cryotomy, laser microdissection, and improved fluorometric analysis of GUS activity using 6-chloro-4-methylumbelliferyl-β-D-glucuronide as an efficient fluorogenic substrate for kinetic studies in plants.
View Article and Find Full Text PDFPlasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair.
View Article and Find Full Text PDFDelta-1-pyrroline-5-carboxylate synthetase enzymes, which catalyse the rate-limiting step of proline biosynthesis, are encoded by two closely related P5CS genes in Arabidopsis. Transcription of the P5CS genes is differentially regulated by drought, salinity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthesis. Here we describe the genetic characterization of p5cs insertion mutants, which indicates that P5CS1 is required for proline accumulation under osmotic stress.
View Article and Find Full Text PDFSWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four SWI3-like proteins that show remarkable functional diversification.
View Article and Find Full Text PDFTo assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection.
View Article and Find Full Text PDFIRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots.
View Article and Find Full Text PDF