Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through multiple, reversibly-binding tethers that detach and successively re-attach, but not collectively detach to cause detachment of an entire bacterium. Arguments build on combining analyses of confined Brownian-motion of bacteria adhering to glass and their AFM force-distance curves and include the following observations: (1) force-distance curves showed detachment events indicative of multiple binding tethers, (2) vibration amplitudes of adhering bacteria parallel to a surface decreased with increasing adhesion-forces acting perpendicular to the surface, (3) nanoscopic displacements of bacteria with relatively long autocorrelation times up to several seconds, in absence of microscopic displacement, (4) increases in Mean-Squared-Displacement over prolonged time periods according to t with 0 < α ≪ 1, indicative of confined displacement.
View Article and Find Full Text PDFAdhesion and friction are closely related and play a predominant role in many natural processes. From the wall-clinging feet of the gecko to bacteria forming a biofilm, in many cases adhesion is a necessity to survive. The direction in which forces are applied has shown to influence the bond strength of certain systems tremendously and can mean the difference between adhesion and detachment.
View Article and Find Full Text PDFBacterial adhesion to surfaces is accompanied by cell wall deformation that may extend to the lipid membrane with an impact on the antimicrobial susceptibility of the organisms. Nanoscale cell wall deformation upon adhesion is difficult to measure, except for Δpbp4 mutants, deficient in peptidoglycan cross-linking. This work explores surface enhanced fluorescence to measure the cell wall deformation of Staphylococci adhering on gold surfaces.
View Article and Find Full Text PDF