Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells.
View Article and Find Full Text PDFIn this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment.
View Article and Find Full Text PDFThe fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field.
View Article and Find Full Text PDFVery Small Embryonic-like Stem Cells (VSELSCs) and Very Small Cancer Stem Cells (VSCSCs) are fields of intensive research. Although the presence in vitro of VSELSC and VSCSC cellular stage analogs appear probable, it has yet to be published. Utilizing established human cell cultures with varying populations of primitive cells, stained with CD markers specific to primitive stages, in addition to a fluorescent DNA dye, and following histochemical processing, we have developed a cytological method for detecting Very Small Leukemic Stem-like Cells (VSLSLCs), Very Small Cancer Stem-like Cells (VSCSLCs), and VSELSCs.
View Article and Find Full Text PDFHematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10).
View Article and Find Full Text PDFPoor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC and EC) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-, A-549-, and HEK-293-derived sublines with a focus on their primitive cell content.
View Article and Find Full Text PDFProliferation and expansion of leukemia is driven by leukemic stem cells (LSCs). Multidrug resistance (MDR) of LSCs is one of the main reasons of failure and relapses in acute myeloid leukemia (AML) treatment. In this study, we show that maintaining HL-60 at low cell culture density or applying a 240-day treatment with anthrapyridazone (BS-121) increased the percentage of primitive cells, which include LSCs determining the overall stage profile.
View Article and Find Full Text PDF