Femoral fractures are often considered lethal for adult horses because femur osteosynthesis is still a surgical challenge. For equine femur osteosynthesis, primary stability is essential, but the detailed physiological forces occurring in the hindlimb are largely unknown. The objective of this study was to create a numerical testing environment to evaluate equine femur osteosynthesis based on physiological conditions.
View Article and Find Full Text PDFIn tendon transfer surgeries sufficient stability of the tenorrhaphy is essential. In addition to the choice of a suitable technique, adequate overlap of donor and recipient tendons must be ensured. The aim of this study was to investigate the tensile strength with regard to tendon overlap of a recently published tenorrhaphy, termed Woven-Fridén (WF) tenorrhaphy, which displayed higher tensile strength and lower bulk when compared to the established Pulvertaft technique.
View Article and Find Full Text PDFThis paper presents the application of an adaptive exoskeleton for finger rehabilitation. The system consists of a force-controlled exoskeleton of the finger and wireless coupling to a mobile application for the rehabilitation of complex regional pain syndrome (CRPS) patients. The exoskeleton has sensors for motion detection and force control as well as a wireless communication module.
View Article and Find Full Text PDFBackground/aim: Increasing economic pressure in modern healthcare necessitates an increase in efficiency in total knee arthroplasty (TKA) while maintaining high-quality outcomes. Removal of debris using pulsatile lavage (PL) during cement polymerization may considerably reduce the operative duration. However, water can penetrate the interface, resulting in impaired implant fixation.
View Article and Find Full Text PDFIn this study, topology optimized, patient specific osteosynthesis plates (TOPOS-implants) are evaluated for the mandibular reconstruction using fibula segments. These shape optimized implants are compared to a standard treatment with miniplates (thickness: 1.0 mm, titanium grade 4) in biomechanical testing using human cadaveric specimen.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
December 2021
Purpose: Dislocated tibial avulsions of the posterior cruciate ligament (PCL) require surgical intervention. Several arthroscopic strategies are options to fix the fragment and restore posterior laxity, including two types of suspension button devices: adjustable (self-locking) and rigid knotted systems. Our hypothesis was that a rigid knotted button construct has superior biomechanical properties regarding laxity restoration compared with an adjustable system.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
April 2020
Purpose: Assessment of medial meniscus extrusion (MME) has become increasingly popular in clinical practice to evaluate the dynamic meniscus function and diagnose meniscus pathologies. The purpose of this biomechanical study was to investigate the correlation between MME and the changes in joint contact pressure in varus and valgus alignment. It was hypothesized that varus alignment would result in significantly higher MME along with a higher joint contact pressure in the medial compartment.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
April 2020
Purpose: Arthroscopic partial meniscectomy of medial meniscus tears and varus alignment are considered independent risk factors for increased medial compartment load, thus contributing to the development of medial osteoarthritis. The purpose of this biomechanical study was to investigate the effect of lower limb alignment on contact pressure and contact area in the knee joint following sequential medial meniscus resection. It was hypothesized that a meniscal resection of 50% would lead to a significant overload of the medial compartment in varus alignment.
View Article and Find Full Text PDF