Publications by authors named "Jan J Brosens"

Decidualization denotes the differentiation of endometrial stromal cells into specialized decidual cells, essential for embryo implantation and pregnancy. The process requires coordination of progesterone and cAMP signaling, which converge on downstream transcription factors. PGE2 and relaxin, acting, respectively, through Gαs-coupled GPCRs EP2 and RXFP1, are putative candidates for generating cAMP in differentiating stromal cells.

View Article and Find Full Text PDF

Decidualization denotes the process of inflammatory reprogramming of endometrial stromal cells (EnSC) into specialized decidual cells (DC). During this process, EnSC are subjected to endoplasmic reticulum (ER) stress as well as acute cellular senescence. Both processes contribute to the proinflammatory mid-luteal implantation window and their dysregulation has been implicated in reproductive failure.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates early human trophoblast development using marmoset embryos, bridging gaps in understanding due to the inaccessibility of human early conceptus.
  • - Researchers successfully created trophoblast stem cells (TSCs) from marmoset pluripotent stem cells, demonstrating unique characteristics and differentiation potential compared to human TSCs.
  • - The findings suggest that specific culture conditions for marmosets can maintain a trophoblast-like identity, revealing insights into evolutionary differences in implantation and enhancing knowledge of human development.
View Article and Find Full Text PDF

three-dimensional (3D) models are better able to replicate the complexity of real organs and tissues than 2D monolayer models. The human endometrium, the inner lining of the uterus, undergoes complex changes during the menstrual cycle and pregnancy. These changes occur in response to steroid hormone fluctuations and elicit crosstalk between the epithelial and stromal cell compartments, and dysregulations are associated with a variety of pregnancy disorders.

View Article and Find Full Text PDF

Phenotypic changes to endometrial epithelial cells underpin receptivity to embryo implantation at the onset of pregnancy but the effect of hyperglycemia on these processes remains poorly understood. Here, we show that physiological levels of glucose (5 mM) abolished receptivity in the endometrial epithelial cell line, Ishikawa. However, embryo attachment was supported by 17 mM glucose as a result of glucose flux through the hexosamine biosynthetic pathway (HBP) and modulation of cell function via protein O-GlcNAcylation.

View Article and Find Full Text PDF

Background: Endometrial cancer is a multifactorial disease with inflammatory, metabolic and potentially microbial cues involved in disease pathogenesis. The endometrial cancer microbiome has been poorly characterised so far and studies have often overestimated bacterial biomass due to lack of integration of appropriate contamination controls. There is also a scarcity of evidence on the functionality of microbial microenvironments in endometrial cancer.

View Article and Find Full Text PDF

Estrogen-dependent proliferation followed by progesterone-dependent differentiation of the endometrium culminates in a short implantation window. We performed single-cell assay for transposase-accessible chromatin with sequencing on endometrial samples obtained across the menstrual cycle to investigate the regulation of temporal gene networks that control embryo implantation. We identify uniquely accessible chromatin regions in all major cellular constituents of the endometrium, delineate temporal patterns of coordinated chromatin remodeling in epithelial and stromal cells, and gain mechanistic insights into the emergence of a receptive state through integrated analysis of enriched transcription factor (TF) binding sites in dynamic chromatin regions, chromatin immunoprecipitation sequencing analyses, and gene expression data.

View Article and Find Full Text PDF

Understanding the process of human embryo implantation is impeded by the inability to study this phenomenon in vivo, thus limiting opportunities to gain knowledge to in vitro modeling. Previous models have relied on monolayer co-cultures, which do not replicate the complexity of endometrial tissue. Here, we detail the establishment of three-dimensional endometrial assembloids, comprising gland-like epithelial organoids in a stromal matrix.

View Article and Find Full Text PDF

Embryo implantation in humans is interstitial, meaning the entire conceptus embeds in the endometrium before the placental trophoblast invades beyond the uterine mucosa into the underlying inner myometrium. Once implanted, embryo survival pivots on the transformation of the endometrium into an anti-inflammatory placental bed, termed decidua, under homeostatic control of uterine natural killer cells. Here, we examine the evolutionary context of embryo implantation and elaborate on uterine remodelling before and after conception in humans.

View Article and Find Full Text PDF

We tested the hypothesis that conserved placental mammal-specific microRNAs and their targets facilitate endometrial receptivity to implantation. Expression of miR-340-5p, -542-3p, and -671-5p was regulated by exposure of endometrial epithelial cells to progesterone (10 μg/ml) for 24 h coordinate with 1,713 of their predicted targets. Proteomic analysis of cells transfected with miRNA mimic/inhibitor (48 h: n = 3) revealed 1,745 proteins altered by miR-340-5p (mimic; 1,369, inhibitor; 376) of which 171 were predicted targets and P4-regulated.

View Article and Find Full Text PDF

In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase.

View Article and Find Full Text PDF

Upon embryo implantation, the uterine mucosa - the endometrium - transforms into a robust decidual matrix that accommodates the fetal placenta throughout pregnancy. This transition is driven by the differentiation of endometrial fibroblasts into specialised decidual cells. A synchronised influx of circulating natural killer (NK) cells and bone marrow-derived mesenchymal stem/progenitor cells (BM-MSC) is pivotal for decidual homeostasis and expansion in early pregnancy.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation.

View Article and Find Full Text PDF

Compared to most mammals, human pregnancy is unusual in that it involves chromosomally diverse embryos, cyclical breakdown and regeneration of the uterine mucosa, and intimate integration of fetal and maternal cells at the uteroplacental interface. Not surprisingly, pregnancy often falters in early gestation. Whether these losses result in clinical miscarriages depends on the origins and impacts of chromosomal errors on fetal development and the ability of the decidualizing endometrium to engage in embryo biosensing and selection.

View Article and Find Full Text PDF

Study Question: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach?

Summary Answer: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample.

What Is Known Already: Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive.

Study Design, Size, Duration: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4-12 days after a self-reported positive home ovulation test.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between vaginal microbiota and miscarriage risks, focusing on both chromosomally normal (euploid) and abnormal (aneuploid) miscarriages compared to healthy pregnancies.
  • Researchers analyzed vaginal microbial composition using advanced genetic techniques on samples from 167 women and measured various immune response cytokines in cervical vaginal fluid to understand their connection to miscarriage outcomes.
  • Findings indicate that euploid miscarriages showed lower levels of beneficial Lactobacillus species and higher pro-inflammatory cytokine levels, suggesting that vaginal microbiota could be significant in preventing pregnancy loss.
View Article and Find Full Text PDF

Over the last thirty years, evidence has been accumulating that Hypertensive Disorders of Pregnancy (HDP) and, specifically, Preeclampsia (PE) produce not only long-term effects on the pregnant woman, but have also lasting consequences for the fetus. At the core of these consequences is the phenomenon known as defective deep placentation, being present in virtually every major obstetrical syndrome. The profound placental vascular lesions characteristic of this pathology can induce long-term adverse consequences for the pregnant woman's entire arterial system.

View Article and Find Full Text PDF

Evolutionary changes in the anatomy and physiology of the female reproductive system underlie the origins and diversification of pregnancy in Eutherian ('placental') mammals. This developmental and evolutionary history constrains normal physiological functions and biases the ways in which dysfunction contributes to reproductive trait diseases and adverse pregnancy outcomes. Here, we show that gene expression changes in the human endometrium during pregnancy are associated with the evolution of human-specific traits and pathologies of pregnancy.

View Article and Find Full Text PDF

Recurrent Pregnancy Loss (RPL) affects 2-4% of couples, and with increasing numbers of pregnancy losses the risk of miscarrying a euploid pregnancy is increased, suggesting RPL is a pathology distinct from sporadic miscarriage that is due largely to lethal embryonic aneuploidy. There are a number of conditions associated with RPL including unspecified "immune" pathologies; one of the strongest candidates for dysregulation remains T regulatory cells as depletion in the very early stages of pregnancy in mice leads to pregnancy loss. Human endometrial Treg and conventional CD4T cells were isolated during the peri-implantation period of the menstrual cycle in normal women.

View Article and Find Full Text PDF

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma.

View Article and Find Full Text PDF

Embryo implantation is a complex and tightly regulated process. In humans, uterine luminal epithelium functions as a biosensor gauging the embryo quality and transmitting this information to the underlying endometrial stromal cells. This quality control ensures that only high quality embryos are implanted, while aberrant ones are rejected.

View Article and Find Full Text PDF

Women who have had repeated miscarriages often have uncertainties about the cause, the likelihood of recurrence, the investigations they need, and the treatments that might help. Health-care policy makers and providers have uncertainties about the optimal ways to organise and provide care. For this Series paper, we have developed recommendations for practice from literature reviews, appraisal of guidelines, and a UK-wide consensus conference that was held in December, 2019.

View Article and Find Full Text PDF

The physical and psychological effect of miscarriage is commonly underappreciated. The journey from diagnosis of miscarriage, through clinical management, to supportive aftercare can be challenging for women, their partners, and caregivers. Diagnostic challenges can lead to delayed or ineffective care and increased anxiety.

View Article and Find Full Text PDF
Article Synopsis
  • Miscarriage is when a pregnancy ends before the baby can survive outside the mother, and there are about 23 million miscarriages each year around the world.
  • Many factors can increase the risk of having a miscarriage, such as the age of the parents, health habits like smoking and drinking, and even environmental factors like pollution.
  • Miscarriages can cause both physical problems and emotional issues, like anxiety and depression, so it's important for women who have experienced this to get proper medical care and support.
View Article and Find Full Text PDF

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation.

View Article and Find Full Text PDF