Mammography images are widely used to detect non-palpable breast lesions or nodules, aiding in cancer prevention and enabling timely intervention when necessary. To support medical analysis, computer-aided detection systems can automate the segmentation of landmark structures, which is helpful in locating abnormalities and evaluating image acquisition adequacy. This paper presents a deep learning-based framework for segmenting the nipple, the pectoral muscle, the fibroglandular tissue, and the fatty tissue in standard-view mammography images.
View Article and Find Full Text PDFFetal echocardiography, a specialized ultrasound application commonly utilized for fetal heart assessment, can greatly benefit from automated segmentation of anatomical structures, aiding operators in their evaluations. We introduce a novel approach that combines various deep learning models for segmenting key anatomical structures in 2D ultrasound images of the fetal heart. Our ensemble method combines the raw predictions from the selected models, obtaining the optimal set of segmentation components that closely approximate the distribution of the fetal heart, resulting in improved segmentation outcomes.
View Article and Find Full Text PDF