Publications by authors named "Jan Hodek"

Hydrogen sulfide (HS) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-HS-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine.

View Article and Find Full Text PDF
Article Synopsis
  • Infection control measures are vital for preventing the spread of viruses and bacteria, particularly in high-risk environments, and new technologies are being developed to tackle this issue.
  • The study focuses on a proprietary cationic polymer called C-POLAR that can reduce the presence of viruses like SARS-CoV-2 and bacteria on treated surfaces and air filters by significantly lowering viral levels and effectively eradicating pathogens.
  • Results indicate that applying C-POLAR to air filtration materials and textiles enhances infection resilience, providing a safer environment by capturing and neutralizing harmful pathogens.
View Article and Find Full Text PDF

Highly sulfated malto-oligomers, similar to heparin and heparan-sulfate, have good antiviral, antimetastatic, anti-inflammatory and cell growth inhibitory effects. Due to their broad biological activities and simple structure, sulfated malto-oligomer derivatives have a great therapeutic potential, therefore, the development of efficient synthesis methods for their production is of utmost importance. In this work, preparation of α-(1→4)-linked oligoglucosides containing a sulfonatomethyl moiety at position C-6 of each glucose unit was studied by different approaches.

View Article and Find Full Text PDF

(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties.

View Article and Find Full Text PDF

d-Arabinofuranosyl-pyrimidine and -purine nucleoside analogues containing alkylthio-, acetylthio- or 1-thiosugar substituents at the C2' position were prepared from the corresponding 3',5'--silylene acetal-protected nucleoside 2'-exomethylenes by photoinitiated, radical-mediated hydrothiolation reactions. Although the stereochemical outcome of the hydrothiolation depended on the structure of both the thiol and the furanoside aglycone, in general, high d-arabino selectivity was obtained. The cytotoxic effect of the arabinonucleosides was studied on tumorous SCC (mouse squamous cell) and immortalized control HaCaT (human keratinocyte) cell lines by MTT assay.

View Article and Find Full Text PDF

Influenza virus causes severe respiratory infection in humans. Current antivirotics target three key proteins in the viral life cycle: neuraminidase, the M2 channel and the endonuclease domain of RNA-dependent-RNA polymerase. Due to the development of novel pandemic strains, additional antiviral drugs targetting different viral proteins are still needed.

View Article and Find Full Text PDF

Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2.

View Article and Find Full Text PDF

Positive-sense single-stranded RNA (+RNA) viruses have proven to be important pathogens that are able to threaten and deeply damage modern societies, as illustrated by the ongoing COVID-19 pandemic. Therefore, compounds active against most or many +RNA viruses are urgently needed. Here, we present PR673, a helquat-like compound that is able to inhibit the replication of SARS-CoV-2 and tick-borne encephalitis virus in cell culture.

View Article and Find Full Text PDF

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production.

View Article and Find Full Text PDF

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e.

View Article and Find Full Text PDF

Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation.

View Article and Find Full Text PDF

Hepatitis B virus uses e antigen (HBe), which is dispensable for virus infectivity, to modulate host immune responses and achieve viral persistence in human hepatocytes. The HBe precursor (p25) is directed to the endoplasmic reticulum (ER), where cleavage of the signal peptide (sp) gives rise to the first processing product, p22. P22 can be retro-translocated back to the cytosol or enter the secretory pathway and undergo a second cleavage event, resulting in secreted p17 (HBe).

View Article and Find Full Text PDF

The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone.

View Article and Find Full Text PDF

This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2'- MTase has become available; however, its biological characterization within the infected cells remains largely elusive.

View Article and Find Full Text PDF

A series of 7-deazaadenine ribonucleosides bearing alkyl, alkenyl, alkynyl, aryl, or hetaryl groups at position 7 as well as their 5'--triphosphates and two types of monophosphate prodrugs (phosphoramidates and -acylthioethanol esters) were prepared and tested for antiviral activity against selected RNA viruses (Dengue, Zika, tick-borne encephalitis, West Nile, and SARS-CoV-2). The modified triphosphates inhibited the viral RNA-dependent RNA polymerases at micromolar concentrations through the incorporation of the modified nucleotide and stopping a further extension of the RNA chain. 7-Deazaadenosine nucleosides bearing ethynyl or small hetaryl groups at position 7 showed (sub)micromolar antiviral activities but significant cytotoxicity, whereas the nucleosides bearing bulkier heterocycles were still active but less toxic.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) core protein (HBc) plays many roles in the HBV life cycle, such as regulation of transcription, RNA encapsidation, reverse transcription, and viral release. To accomplish these functions, HBc interacts with many host proteins and undergoes different post-translational modifications (PTMs). One of the most common PTMs is ubiquitination, which was shown to change the function, stability, and intracellular localization of different viral proteins, but the role of HBc ubiquitination in the HBV life cycle remains unknown.

View Article and Find Full Text PDF

A critical lack of personal protective equipment has occurred during the COVID-19 pandemic. Polylactic acid (PLA), a polyester made from renewable natural resources, can be exploited for 3D printing of protective face masks using the Fused Deposition Modelling technique. Since the possible high porosity of this material raised questions regarding its suitability for protection against viruses, we have investigated its microstructure using scanning electron microscopy and aerosol generator and photometer certified as the test system according to the standards EN 143 and EN 149.

View Article and Find Full Text PDF

Influenza viruses can cause severe respiratory infections in humans, leading to nearly half a million deaths worldwide each year. Improved antiviral drugs are needed to address the threat of development of novel pandemic strains. Current therapeutic interventions target three key proteins in the viral life cycle: neuraminidase, the M2 channel and RNA-dependent-RNA polymerase.

View Article and Find Full Text PDF

The biological effects of flavonoids on mammal cells are diverse, ranging from scavenging free radicals and anti-cancer activity to anti-influenza activity. Despite appreciable effort to understand the anti-influenza activity of flavonoids, there is no clear consensus about their precise mode-of-action at a cellular level. Here, we report the development and validation of a screening assay based on AlphaScreen technology and illustrate its application for determination of the inhibitory potency of a large set of polyols against PA N-terminal domain (PA-Nter) of influenza RNA-dependent RNA polymerase featuring endonuclease activity.

View Article and Find Full Text PDF

Recombinant interferon-α (IFN-α) treatment functionally cures chronic hepatitis B virus (HBV) infection in some individuals and suppresses virus replication in hepatocytes infected in vitro. We studied the antiviral effect of conditioned media (CM) from peripheral blood mononuclear cells (PBMCs) stimulated with agonists of Toll-like receptors (TLRs) 2, 7, 8 and 9. We found that CM from PBMCs stimulated with dual-acting TLR7/8 (R848) and TLR2/7 (CL413) agonists were more potent drivers of inhibition of HBe and HBs antigen secretion from HBV-infected primary human hepatocytes (PHH) than CM from PBMCs stimulated with single-acting TLR7 (CL264) or TLR9 (CpG-B) agonists.

View Article and Find Full Text PDF

Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available.

View Article and Find Full Text PDF

Viral infections cause life-threatening diseases in millions of people worldwide every year and there is an urgent need for new, effective antiviral drugs. Hybridization of two chemically diverse compounds into a new bioactive effector product is a successful concept to improve the properties of a hybrid drug relative to the parent compounds. In this study, (iso)quinoline-artemisinin hybrids, obtained through copper-catalyzed azide-alkyne cycloaddition or metal-free click reactions (in organic solvents or in the presence of water), were analyzed in vitro, for the first time, for their inhibitory activity against human cytomegalovirus (HCMV), relative to their parent compounds and the reference drug ganciclovir.

View Article and Find Full Text PDF

The mechanism of action of various viruses has been the primary focus of many studies. Yet, the data on RNA modifications in any type of virus are scarce. Methods for the sensitive analysis of RNA modifications have been developed only recently and they have not been applied to viruses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbao9ehlv7cqnp0g1plo6rfcfk8d9qn8l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once