Preventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature's defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles.
View Article and Find Full Text PDFOne-pot self-assembly reactions of the polyphosphorus complex [Cp*Fe(η -P )] (A), a coinage metal salt AgSbF , and flexible aliphatic dinitriles NC(CH ) CN (x=1-10) yield 1D, 2D, and 3D coordination polymers. The seven-membered backbone of the dinitrile was experimentally found as the borderline for the self-assembly system furnishing products of different kinds. At x<7, various rather simple polymers are exclusively formed possessing either 0D or 1D Ag/A structural motifs connected by dinitrile spacers, while at x≥7, the self-assembly switches to unprecedented extraordinary 3D networks of nano-sized host-guest assemblies (SbF )@[(A) Ag ] (x=7) or (A)@[(A) Ag ] (x=8-10) linked by dinitriles.
View Article and Find Full Text PDFThermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations.
View Article and Find Full Text PDF