Histone proteins can become trapped on DNA in the presence of 5-formylcytosine (5fC) to form toxic DNA-protein conjugates. Their repair may involve proteolytic digestion resulting in DNA-peptide cross-links (DpCs). Here, we have investigated replication of a model DpC comprised of an 11-mer peptide (NH-GGGKGLGK∗GGA) containing an oxy-lysine residue (K∗) conjugated to 5fC in DNA.
View Article and Find Full Text PDFModified nucleotides often hinder and/or decrease the fidelity of DNA polymerases. Tandem lesions, which are comprised of DNA modifications at two contiguous nucleotide positions, can be even more detrimental to genome stability. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5fdU) flanked at the 5'-position by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) or N-(2-deoxy-α,β-D-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•dG) were discovered.
View Article and Find Full Text PDF7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo) is a ubiquitous DNA damage formed by oxidation of 2'-deoxyguanosine. In this study, plasmid DNA containing 8-OxodGuo located in three mutational hot spots of human cancers, codons 248, 249, and 273 of the tumor suppressor gene, was replicated in HEK 293T cells. 8-OxodGuo was only a weak block of replication, and the bypass was largely error-free.
View Article and Find Full Text PDF6-(2-Deoxy-α,β-d--pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo.
View Article and Find Full Text PDFFapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells.
View Article and Find Full Text PDFDNA Repair (Amst)
November 2020
6-Nitrochrysene (6-NC) is a potent mutagen in bacteria and carcinogenic in animals. It is the most potent carcinogen ever tested in newborn mouse assay. DNA lesions resulting from 6-NC modification are likely to induce mutations if they are not removed by cellular defense pathways prior to DNA replication.
View Article and Find Full Text PDF