Publications by authors named "Jan Hendrik Reinders"

A dihydroquinolinone moiety was found to be a potent serotonin reuptake inhibitor pharmacophore when combined with certain amines. This fragment was coupled with selected D(2) ligands to prepare a series of dual acting compounds with attractive in vitro profiles as dopamine D(2) partial agonists and serotonin reuptake inhibitors. Structure-activity studies revealed that the linker plays a key role in contributing to D(2) affinity, function, and SRI activity.

View Article and Find Full Text PDF

A 5-fluoro-tetrahydrocarbazole serotonin reuptake inhibitor (SRI) building block was combined with a variety of linkers and dopamine D2 receptor ligands in an attempt to identify potent D2 partial agonist/SRI molecules for treatment of schizophrenia. This approach has the potential to treat a broader range of symptoms compared to existing therapies. Selected compounds in this series demonstrate high affinity for both targets and D2 partial agonism in cell-based and in vivo assays.

View Article and Find Full Text PDF

We have investigated a series of 7-azaindoles as potential partial agonists of the alpha4beta2 nicotinic acetylcholine receptor (nAChR). Three series of 7-azaindole derivatives have been synthesized and evaluated for rat brain neuronal nicotinic receptor affinity and functional activity. Compound (+)-51 exhibited the most potent nAChR binding (Ki = 10 nM).

View Article and Find Full Text PDF

The receptor binding affinities of the three drug candidates 1 (SLV310), 2 (SLV313), and 3 (SLV314) were positioned against the results from nine (a)typical antipsychotic drugs. The receptor binding data from sixteen monoaminergic receptors served as the input in a principal component analysis (PCA). The PCA outcome revealed a unique binding profile of 1, 2, and 3 as compared with the reference compounds 4-8 and 10-12.

View Article and Find Full Text PDF

Present Parkinson's disease treatment strategies are far from ideal for a variety of reasons; it has therefore been suggested that partial dopamine receptor agonism might be a potential therapeutic approach with potentially fewer side effects. In the present study, we describe the in vitro characterization of the nonergot ligand SLV308 (7-[4-methyl-1-piperazinyl]-2(3H)-benzoxazolonemonohydrochloride). SLV308 binds to dopamine D(2), D(3), and D(4) receptors and 5-HT(1) (A) receptors and is a partial agonist at dopamine D(2) and D(3) receptors and a full agonist at serotonin 5-HT(1) (A) receptors.

View Article and Find Full Text PDF

Combined dopamine D(2) receptor antagonism and serotonin (5-HT)(1A) receptor agonism may improve efficacy and alleviate some side effects associated with classical antipsychotics. The present study describes the in vitro and in vivo characterization of 1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride (SLV313), a D(2/3) antagonist and 5-HT(1A) agonist. SLV313 possessed high affinity at human recombinant D(2), D(3), D(4), 5-HT(2B), and 5-HT(1A) receptors, moderate affinity at 5-HT(7) and weak affinity at 5-HT(2A) receptors, with little-no affinity at 5-HT(4), 5-HT(6), alpha(1), and alpha(2) (rat), H(1) (guinea pig), M(1), M(4), 5-HT(3) receptors, and the 5-HT transporter.

View Article and Find Full Text PDF