Publications by authors named "Jan Haviernik"

Bats are known reservoirs of various emerging pathogens, and have recently been found to host a novel hantavirus, named Brno loanvirus (BRNV), from the Mammantavirinae subfamily (family Hantaviridae, order Bunyavirales). Here we report BRNV detection in bats from the urban area of Brno, Czech Republic in March 2022. Specifically, we uncovered a high prevalence of BRNV (8.

View Article and Find Full Text PDF

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph).

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne encephalitis virus (TBEV) is a significant health issue that affects the nervous system in humans, and a human monoclonal antibody named T025 shows promise in neutralizing this virus.
  • Research indicates that when TBEV encounters antibodies like T025 or T028, it can develop mutations that reduce its ability to cause disease, specifically through changes in its envelope proteins (EDII and EDIII).
  • The study found that using both T025 and T028 together enhances the neutralization of TBEV and prevents the virus from evolving to escape these antibodies.
View Article and Find Full Text PDF

The tick-borne encephalitis virus (TBEV) causes a most important viral life-threatening illness transmitted by ticks. The interactions between the virus and ticks are largely unexplored, indicating a lack of experimental tools and systematic studies. One such tool is recombinant reporter TBEV, offering antibody-free visualization to facilitate studies of transmission and interactions between a tick vector and a virus.

View Article and Find Full Text PDF

We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells.

View Article and Find Full Text PDF

Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from and families.

View Article and Find Full Text PDF

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-19. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-19. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2).

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a causative agent of the pandemic coronavirus disease 2019 (COVID-19), which has resulted in over two million deaths worldwide to date. Diphyllin and diphyllinosides are known as natural blockers of cellular vacuolar ATPases, and so can act as inhibitors of the pH-dependent fusion of viral envelopes with host cell endosomal membranes. Such pH-dependent fusion is a critical early step during the SARS-CoV-2 replication cycle.

View Article and Find Full Text PDF

Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor.

View Article and Find Full Text PDF

Emerging flaviviruses are causative agents of severe and life-threatening diseases, against which no approved therapies are available. Among the nucleoside analogues, which represent a promising group of potentially therapeutic compounds, fluorine-substituted nucleosides are characterized by unique structural and functional properties. Despite having first been synthesized almost 5 decades ago, they still offer new therapeutic opportunities as inhibitors of essential viral or cellular enzymes active in nucleic acid replication/transcription or nucleoside/nucleotide metabolism.

View Article and Find Full Text PDF

The flavivirus, tick-borne encephalitis virus (TBEV) is transmitted by Ixodes spp. ticks and may cause severe and potentially lethal neurological tick-borne encephalitis (TBE) in humans. Studying TBEV requires the use of secondary methodologies to detect the virus in infected cells.

View Article and Find Full Text PDF

Vector-borne flaviviruses (VBFs) affect human health worldwide, but no approved drugs are available specifically to treat VBF-associated infections. Here, we performed in silico screening of a library of U.S.

View Article and Find Full Text PDF

Vaccination against tick-borne encephalitis (TBE) is based on the use of formalin-inactivated, culture-derived whole-virus vaccines. Immune response following vaccination is primarily directed to the viral envelope (E) protein, the major viral surface antigen. In Europe, two TBE vaccines are available in adult and pediatric formulations, namely FSME-IMMUN (Pfizer) and Encepur (GlaxoSmithKline).

View Article and Find Full Text PDF

is the predominant cause of Legionnaires' disease (LD) in New Zealand. Although serogroup 2 (sg2) does not contain the most clinically significant strain, it is an important cause of disease. Here, we report the complete genome sequence of an sg2 isolate from a patient who was hospitalized with LD.

View Article and Find Full Text PDF

The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of tick-borne encephalitis virus (TBEV) and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses.

View Article and Find Full Text PDF

Background: Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multistage disease endemic in tropical regions in Africa, Asia, Oceania, and South America. To date, seven TPE strains have been completely sequenced and analyzed including five TPE strains of human origin (CDC-2, CDC 2575, Gauthier, Ghana-051, and Samoa D) and two TPE strains isolated from the baboons (Fribourg-Blanc and LMNP-1).

View Article and Find Full Text PDF

Arthropod-borne flaviviruses are human pathogens of global medical importance, against which no effective small molecule-based antiviral therapy has currently been reported. Arbidol (umifenovir) is a broad-spectrum antiviral compound approved in Russia and China for prophylaxis and treatment of influenza. This compound shows activities against numerous DNA and RNA viruses.

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne encephalitis virus (TBEV) is a serious virus causing infections in humans, but there's no specific antiviral treatment available.
  • A nucleoside analog, 7-deaza-2'-CMA, was found to improve survival and reduce viral impact in infected mice.
  • The study identified a specific mutation (S603T) in the virus that grants resistance to certain nucleoside analogs, suggesting a mechanism for how the virus adapts and maintains some level of virulence despite treatment.
View Article and Find Full Text PDF

There are currently no approved antiviral therapies against medically important human flaviviruses. The imino-C-nucleoside BCX4430 shows broad-spectrum antiviral activity against a wide range of RNA viruses. Here, we demonstrate that BCX4430 inhibits tick-borne species of the genus Flavivirus; however, the antiviral effect varies against individual species.

View Article and Find Full Text PDF