Crucian carp (), a freshwater fish, can survive chronic anoxia for several months at low temperatures. Consequently, anoxia-related physiological and biochemical adaptations in this species have been studied for more than half a century. Still, despite for the well-known role of protein phosphorylation in regulating cellular processes, no studies have comprehensively characterized the phosphoproteome in crucian carp.
View Article and Find Full Text PDFEnterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS).
View Article and Find Full Text PDFThe crucian carp () can survive complete oxygen depletion (anoxia) for several months at low temperatures, making it an excellent model for studying molecular adaptations to anoxia. Still, little is known about how its global proteome responds to anoxia and reoxygenation. By applying mass spectrometry-based proteome analyses on brain, heart and liver tissue from crucian carp exposed to normoxia, five days anoxia, and reoxygenation, we found major changes in particularly cardiac and hepatic protein levels in response to anoxia and reoxygenation.
View Article and Find Full Text PDFProtein glycosylation systems are widely recognized in bacteria, including members of the genus . In most bacterial species, the molecular mechanisms and evolutionary contexts underpinning target protein selection and the glycan repertoire remain poorly understood. Broad-spectrum -linked protein glycosylation occurs in all human-associated species groups within the genus , but knowledge of their individual glycoprotein repertoires is limited.
View Article and Find Full Text PDFFabry disease (FD) is a rare genetic lysosomal storage disorder, resulting from partial or complete lack of alpha-galactosidase A (α-GAL) enzyme, leading to systemic accumulation of substrate glycosphingolipids with a broad range of tissue damage. Current models are laborious, expensive, and fail to adequately mirror the complex FD physiopathology. To address these issues, we developed an innovative FD model in zebrafish.
View Article and Find Full Text PDFThe biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS.
View Article and Find Full Text PDFMacroautophagy/autophagy delivers cytoplasmic cargo to lysosomes for degradation. In yeast, the single Atg8 protein plays a role in the formation of autophagosomes whereas in mammalian cells there are five to seven paralogs, referred to as mammalian Atg8s (mAtg8s: GABARAP, GABARAPL1, GABARAPL2, LC3A, LC3B, LC3B2 and LC3C) with incompletely defined functions. Here we show that a subset of mAtg8s directly control lysosomal biogenesis.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFGlycosylation of multiple proteins via O-linkage is well documented in bacterial species of Neisseria of import to human disease. Recent studies of protein glycosylation (pgl) gene distribution established that related protein glycosylation systems occur throughout the genus including nonpathogenic species. However, there are inconsistencies between pgl gene status and observed glycan structures.
View Article and Find Full Text PDFAutophagy is a homeostatic process with multiple functions in mammalian cells. Here, we show that mammalian Atg8 proteins (mAtg8s) and the autophagy regulator IRGM control TFEB, a transcriptional activator of the lysosomal system. IRGM directly interacted with TFEB and promoted the nuclear translocation of TFEB.
View Article and Find Full Text PDFThe human pathogens N. gonorrhoeae and N. meningitidis display robust intra- and interstrain glycan diversity associated with their O-linked protein glycosylation (pgl) systems.
View Article and Find Full Text PDFProtein secretion plays a crucial role for bacterial pathogens, exemplified by facultative human-pathogen , which secretes various proteinaceous effectors at different stages of its lifecycle. Accordingly, the identification of factors impacting on protein secretion is important to understand the bacterial pathophysiology. PglL, a predicted oligosaccharyltransferase of , has been recently shown to exhibit -glycosylation activity with relaxed glycan specificity in an engineered system.
View Article and Find Full Text PDFSustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost-effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large-scale protein production, and extensive host-specific post-translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes.
View Article and Find Full Text PDFComplement component 5 (C5) is an essential factor of the defensive complement system in all vertebrates. We report the characterization of C5 cDNA and protein from Atlantic salmon (Salmo salar), a teleost fish species of high importance in aquaculture. The C5 cDNA cloned from liver is 5079 nucleotides long, whose translation product has a molecular weight of 190 kDa, with the classical β-α orientation and motifs/sites for β-α cleavage (RPKR) and cleavage by C5 convertases (R).
View Article and Find Full Text PDFType IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent.
View Article and Find Full Text PDFSyntaxin 17 (Stx17) has been implicated in autophagosome-lysosome fusion. Here, we report that Stx17 functions in assembly of protein complexes during autophagy initiation. Stx17 is phosphorylated by TBK1 whereby phospho-Stx17 controls the formation of the ATG13FIP200 mammalian pre-autophagosomal structure (mPAS) in response to induction of autophagy.
View Article and Find Full Text PDFThe genus includes three major species of importance to human health and disease (, , and ) that express broad-spectrum -linked protein glycosylation (Pgl) systems. The potential for related Pgl systems in other species in the genus, however, remains to be determined. Using a strain of subsp.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2018
The Liver X Receptor α (LXRα) belongs to the nuclear receptor superfamily and plays an essential role in regulating cholesterol, lipid and glucose metabolism and inflammatory responses. We have previously shown that LXRα is post-translationally modified by O-linked β-N-acetyl-glucosamine (O-GlcNAc) with increased transcriptional activity. Moreover, we showed that LXRα associates with O-GlcNAc transferase (OGT) in vitro and in vivo in mouse liver.
View Article and Find Full Text PDFWorkflows capable of determining glycopeptides in large-scale are missing in the field of glycoproteomics. We present an approach for automated annotation of intact glycopeptide mass spectra. The steps in adopting the Mascot search engine for intact glycopeptide analysis included: (i) assigning one letter codes for monosaccharides, (ii) linearizing glycan sequences and (iii) preparing custom glycoprotein databases.
View Article and Find Full Text PDFO-acetylation is a common modification of bacterial glycoconjugates. By modifying oligosaccharide structure and chemistry, O-acetylation has important consequences for biotic and abiotic recognition events and thus bacterial fitness in general. Previous studies of the broad-spectrum O-linked protein glycosylation in pathogenic Neisseria species (including N.
View Article and Find Full Text PDFMass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins, including identification of glycan structure and components, their attachment sites and protein carriers, remains challenging.
View Article and Find Full Text PDFProtein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2).
View Article and Find Full Text PDFThe parasite Anisakis simplex is present in many marine fish species that are directly used as food or in processed products. The anisakid larvae infect mostly the gut and inner organs of fish but have also been shown to penetrate into the fillet. Thus, human health can be at risk, either by contracting anisakiasis through the consumption of raw or under-cooked fish, or by sensitisation to anisakid proteins in processed food.
View Article and Find Full Text PDF