Publications by authors named "Jan Hanacek"

Hyperoxia-induced lung injury is well known in animal and human studies. The respiratory epithelium including sensory nerve endings is a major target for oxidative injury that manifested in lung function changes including cough. On the basis of available information we supposed that hyperoxia alone or in combination with primary lung tissue injury should have a damaging effect on lungs, including the airway nerve endings with the changes in the sensitivity of the central and peripheral neuronal pathways regulating cough.

View Article and Find Full Text PDF

The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing.

View Article and Find Full Text PDF

Background: Numerous studies show higher cough reflex sensitivity (CRS) and cough outcomes in children compared to adults and in females compared to males. Despite close link that exists between cough and environment the potential influence of environmental air pollution on age- and gender -related differences in cough has not been studied yet.

Purpose: The purpose of our study was to analyse whether the effects of exposure to environmental tobacco smoke (ETS) from parental smoking and PM10 from living in urban area are implied in age- and gender-related differences in cough outcomes of healthy, non-asthmatic children.

View Article and Find Full Text PDF

The cough reflex is modulated throughout growth and development. Cough-but not expiration reflex-appears to be absent at birth, but increases with maturation. Thus, acute cough is the most frequent respiratory symptom during the first few years of life.

View Article and Find Full Text PDF

We have reviewed the role of afferent inputs and blood chemical changes to the central nervous system, and the way in which they modify the cough and expiration reflexes (CR and ER). Slowly adapting pulmonary stretch receptors (SARs) augment the CR, insofar as when their activity is abolished the CRs from the tracheobronchial (TB) tree and larynx are abolished or weakened. However, stimulation of SARs by lung inflation has an inconsistent effect on the CR.

View Article and Find Full Text PDF