Publications by authors named "Jan H van Weerd"

Cell type- and differentiation-specific gene expression is precisely controlled by genomic non-coding regulatory elements (NCREs), which include promoters, enhancers, silencers and insulators. It is estimated that more than 90% of disease-associated sequence variants lie within the non-coding part of the genome, potentially affecting the activity of NCREs. Consequently, the functional annotation of NCREs is a major driver of genome research.

View Article and Find Full Text PDF

Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored.

View Article and Find Full Text PDF

Genome-wide association studies have identified noncoding variants near that are associated with PR interval and QRS duration, suggesting that subtle changes in expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous mutant () mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice.

View Article and Find Full Text PDF

Genome-wide association studies have implicated common genomic variants in the gene desert upstream of in cardiac conduction velocity. Whether these noncoding variants affect expression of or neighboring genes and how they affect cardiac conduction is not understood. Here, we use high-throughput STARR-seq to test the entire 1.

View Article and Find Full Text PDF

The human ether-a-go-go-related gene KCNH2 encodes the voltage-gated potassium channel underlying I, a current critical for the repolarization phase of the cardiac action potential. Mutations in KCNH2 that cause a reduction of the repolarizing current can result in cardiac arrhythmias associated with long-QT syndrome. Here, we investigate the regulation of KCNH2 and identify multiple active enhancers.

View Article and Find Full Text PDF

The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.

View Article and Find Full Text PDF

Rationale: The evolutionary conserved Tbx3/Tbx5 gene cluster encodes T-box transcription factors that play crucial roles in the development and homeostasis of the cardiac conduction system in human and mouse. Both genes are expressed in overlapping patterns and function in strictly tissue-specific and dose-dependent manners, yet, their regulation is poorly understood.

Objective: To analyze the mechanism underlying the complex regulation of the Tbx3/Tbx5 cluster.

View Article and Find Full Text PDF

In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3) and Islet-1 (Isl1).

View Article and Find Full Text PDF

Congenital heart malformations remain the leading cause of death related to birth defects. Recent advances in developmental and regenerative cardiology have shed light on a mechanistic understanding of heart development that is controlled by a transcriptional network of genetic and epigenetic factors. This article reviews the roles of chromatin remodelling factors important for cardiac development with the current knowledge of cardiac morphogenesis, regeneration, and direct cardiac differentiation.

View Article and Find Full Text PDF