Machine learning methods have become increasingly important in animal science, and the success of an automated application using machine learning often depends on the right choice of method for the respective problem and data set. The recognition of objects in 3D data is still a widely studied topic and especially challenging when it comes to the partition of objects into predefined segments. In this study, two machine learning approaches were utilized for the recognition of body parts of dairy cows from 3D point clouds, i.
View Article and Find Full Text PDFWith increasing herd sizes, camera based monitoring solutions rise in importance. 3D cameras, for example Time-Of-Flight (TOF) cameras, measure depth information. These additional information (3D data) could be beneficial for monitoring in dairy production.
View Article and Find Full Text PDFAs herd sizes have increased in the last decades, computerized monitoring solutions, which provide fast, objective and accurate evaluations of the herd status, gain more and more importance. This study analyzes the feasibility of a Time-of-Flight-camera-based system for gathering body traits in dairy cows for use under cow barn conditions. Recording, determination of body condition score on a 5 point scale by visual and manual inspection, and measuring the backfat thickness with ultrasound took place from July 2011 to May 2012 at the dairy research farm Karkendamm of the Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel (Germany) and between August 2010 and July 2012 at the Institute for Agricultural Engineering and Animal Husbandry of Bavarian State Research Center for Agriculture in Grub (Germany).
View Article and Find Full Text PDF