Introduction: The European Risk Management Plan (EU-RMP) is a proactive planning tool for identification, characterisation and management of important risks and missing information throughout the lifecycle of a medicinal product. Over the past 15 years the EU-RMP has been a part of the pharmacovigilance practice in Europe, but there are no published studies assessing impact of the growing experience and evolving regulatory framework on the content and focus of the EU-RMP.
Objectives: The objectives were to study the real-world impact of evolving pharmacovigilance guidelines on the proactive lifecycle management of important risks and missing information through EU-RMPs, and to further explore the impact of different resources on the management of the benefit-risk profile.
Wnt signalling is prevented by the proteosomal degradation of β-catenin, which occurs in a destruction complex containing adenomatous polyposis coli (APC), APC-like (APCL), Axin and Axin2. Truncating mutations of the APC gene result in the constitutive stabilisation of β-catenin and the initiation of colon cancer, although tumour cells tolerate the expression of wild-type APCL. Using the colocalisation of overexpressed Axin, APC and APCL constructs as a readout of interaction, we found that Axin interacted with the second twenty amino acid repeat (20R2) of APC and APCL.
View Article and Find Full Text PDFDefective human leukocyte antigen (HLA) class I expression in malignant cells facilitates their escape from destruction by CD8(+) cytotoxic T lymphocytes. In this study, a post-translational mechanism of HLA class I abnormality that does not involve defects in the HLA subunits and antigen processing machinery components was identified and characterized. The marked HLA class I downregulation phenotype of a metastatic carcinoma cell line can be readily reversed by trypsin, suggesting a masking effect by serine protease-sensitive HLA class I-interacting factors.
View Article and Find Full Text PDFTruncating mutations affect the adenomatous polyposis coli (APC) gene in most cases of colon cancer, resulting in the stabilization of β-catenin and uncontrolled cell proliferation. We show here that colon cancer cell lines express also the paralog APC-like (APCL or APC2). RNA interference revealed that it controls the level and/or the activity of β-catenin, but it is less efficient and binds less well to β-catenin than APC, thereby providing one explanation as to why the gene is not mutated in colon cancer.
View Article and Find Full Text PDF