We propose a nonparametric procedure to achieve fast inference in generative graphical models when the number of latent states is very large. The approach is based on iterative latent variable preselection, where we alternate between learning a selection function to reveal the relevant latent variables and using this to obtain a compact approximation of the posterior distribution for EM. This can make inference possible where the number of possible latent states is, for example, exponential in the number of latent variables, whereas an exact approach would be computationally infeasible.
View Article and Find Full Text PDF