Spectrochim Acta A Mol Biomol Spectrosc
May 2014
The photo-physical properties of five new para-phenyl substituted derivatives of 3-(7-dimethylamino)coumarin N-phenylsemicarbazone with various electron-withdrawing substituents R (RF, Br, CF3, CN or NO2) in the para-position on the phenyl ring were investigated in solvents and in polymer matrices. Tuning their fluorescent properties via para-substitution is discussed in terms of Twisted Intra-molecular Charge-Transfer (TICT) state formation, specific solute-solvent interactions (hydrogen bonding), fluorescent H-aggregates formation, and the solvent polarity and polymer matrix effects.
View Article and Find Full Text PDFThe photophysical properties of 7-(dimethylamino)coumarin-3-carbaldehyde 3 and its phenylsemicarbazone 4 were investigated in solvents of various polarity and in differing solvent mixtures. The different fluorescent quantum yield (ΦF) behavior of 3 and 4 in highly polar solvents is discussed in terms of Twisted Intramolecular Charge-Tranfer (TICT) state formation and the specific solute-solvent interactions. Because of the weak intermolecular hydrogen bonding ability of both the radiative ICT and nonradiative TICT excited state of 3 and the linear steep decrease in ΦF from a medium to high polarity region, coumarin 3 could be a useful polarity probe for microenvironments containing hydrogen bonding groups.
View Article and Find Full Text PDFThe absorption and fluorescence spectra of substituted coumarins (2-oxo-2H-chromenes) were investigated in solvents and in polymer matrices. The substitutions involved were: (1) by groups with varying electron donating ability such as CH₃, OCH₃ and N(CH₃)₂, mainly, but not exclusively, in positions 7 and (2), by either CHO or 4-PhNHCONHN=CH- in position 3. While the spectra of non-substituted coumarin-3-carbaldehyde has absorptions at approximately 305 and 350 nm, substitution at position 7 leads to remarkable changes in the shape of the absorption spectrum and shifts the absorption to a longer wavelength.
View Article and Find Full Text PDF