Inhalation drug administration is increasingly used for local pharmacotherapy of lung disorders and as an alternative route for systemic drug delivery. Modern inhalation powder systems aim to target drug deposition in the required site of action. Large porous particles (LPP), characterized by an aerodynamic diameter over 5 μm, density below 0.
View Article and Find Full Text PDFThe formulation of microparticles composed of a mixture of carriers represents an innovative approach for lung drug delivery of dry powder. The carriers used can significantly influence the properties of the microparticles, such as size, shape, surface area, hygroscopicity, or aggregation, thus improving the aerosolization of the drugs after inhalation. The properties mentioned above are crucial for effective pulmonary therapy.
View Article and Find Full Text PDFThe formulation of microparticles composed of a mixture of carriers represents an innovative approach for lung drug delivery of dry powder. The carriers used can significantly influence the properties of the microparticles, such as size, shape, surface area, hygroscopicity, or aggregation, thus improving the aerosolization of the drugs after inhalation. The properties mentioned above are crucial for effective pulmonary therapy.
View Article and Find Full Text PDFTreating oral diseases remains challenging as API is quickly washed out of the application site by saliva turnover and mouth movements. In situ gels are a class of application forms that present sol-gel transition's ability as a response to stimuli. Their tunable properties are provided using smart polymers responsible for stimuli sensitivity, often providing mucoadhesivity.
View Article and Find Full Text PDFCeska Slov Farm
September 2023
Inhalation administration of dry powder particles is a common application route to achieve local and systemic drug effects. For pulmonary diseases, the deposition of drugs at the site of action is desirable. Thus, the parameters of the inhaled particles, especially their size, shape, or aerosolization, are essential for effective treatment.
View Article and Find Full Text PDFThe direct tailoring of the size, composition, or number of layers belongs to the advantages of 3D printing employment in producing orodispersible films (ODFs) compared to the frequently utilized solvent casting method. This study aimed to produce porous ODFs as a substrate for medicated ink deposited by a 2D printer. The innovative semi-solid extrusion 3D printing method was employed to produce multilayered ODFs, where the bottom layer assures the mechanical properties.
View Article and Find Full Text PDFInhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.
View Article and Find Full Text PDFHigh specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising materials include magnesium aluminometasilicates, mesoporous silicates, and silica aerogels. Clay minerals with laminar or fibrous internal structures also provide suitable properties for liquid drug incorporation.
View Article and Find Full Text PDFOrodispersible films are an innovative dosage form. Their main advantages are the application comfort and the possibility of personalization. This work aimed to evaluate the influence of different drying times on the properties of orodispersible films of various thicknesses, prepared in two different semisolid extrusion 3D printing setups.
View Article and Find Full Text PDFA method of preparing tablets called liquisolid technique is currently emerging. In these formulations, an important role is played by porous carriers, which are the basic building blocks of liquisolid systems (LSSs). The most common are microcrystalline cellulose (MCC), magnesium aluminometasilicates, silica aerogels, mesoporous silicates, clays, etc.
View Article and Find Full Text PDFThe incidence of fungal infections has increased in recent decades not only in patients with predisposing and risk factors, but it has also spread up due to the widespread use of broad-spectrum antibiotics, immunosuppressants and corticosteroids. A limited number of drugs are currently used to treat oral candidiasis (OC). There is an emerging need to look for new antifungals, to rework or to explore the already known molecules.
View Article and Find Full Text PDFThe aim of this study was to prepare benzydamine hydrochloride loaded orodispersible films using modified semisolid extrusion 3D printing method. An innovative approach was developed where thin layer of drug loaded dispersion is printed and dried before printing of subsequent layers. Layer-by-layer drying as the in process step improves mechanical properties of films, uniformity of drug content and allows faster preparation of films in compounding settings due to shortening of drying time.
View Article and Find Full Text PDFEthnopharmacological Relevance: Morus alba L. is used in traditional Chinese medicine for the treatment of various diseases, including bacterial infections and inflammation. As a rich source of phenolic compounds, the plant is an object of many phytochemical and pharmacological studies.
View Article and Find Full Text PDFDisintegrants are substances which promote disintegration of the solid dosage form in the dissolution medium or body fluids. Efficient disintegration is an important prerequisite for ensuring release of the active substance and its good bioavailability. Several mechanisms of disintegrants´ action are currently recognized, but disintegration is a complex process, and the majority of substances act by combining multiple mechanisms.
View Article and Find Full Text PDFThe main objective of the presented research was to prepare an innovative carrier as a filler for detection tubes in the form of double-coated pellets with a very significant color transition during the detection of cholinesterase inhibitors such as nerve agents, organophosphorus or carbamate insecticides in liquids that is observable visually and also spectrophotometrically at 412 nm. The pellet cores were prepared by the extrusion/spheronization method. Consecutively, two different coats were applied on the pellet cores in the coating device using the Wurster column method.
View Article and Find Full Text PDFThe aim of this study was to develop benzydamine hydrochloride-loaded orodispersible films using the modification of a solvent casting method. An innovative approach was developed when the drying process of a small-scale production was used based on a heated inert base for casting the film. During this process, two types of film-forming maltodextrins for rapid drug delivery were used.
View Article and Find Full Text PDFCeska Slov Farm
April 2019
Sodium hyaluronate represents a contemporary biomaterial with broad use in different pharmaceutical and medical fields. It is a physiological glycosaminoglycan, which occurs primarily in the extracellular matrix, synovial fluid, cartilage, epidermis and vitreous body. It plays a critical role as a signalling molecule in immunological processes, cell motility and wound healing, and it possesses antioxidant activity.
View Article and Find Full Text PDFMorusin is a prenylated flavonoid isolated from the root bark of Morus alba. Many studies have shown the ability of flavonoids to act as anti-inflammatory agents. The aim of this study was to evaluate the effect of morusin on experimentally colitis induced by 2,4,6-trinitrobenzensulfonic acid in Wistar rats and to compare it with sulfasalazine, a drug conventionally used in the treatment of inflammatory bowel disease.
View Article and Find Full Text PDFBackground: Buccal flexible films in the form of solid, thin, mucoadhesive patches can be used as dressings separating aphthous lesions from the environment of the oral cavity, which can in turn shorten the treatment period and reduce the pain perception.
Methods: The clinical study was performed on 36 volunteers suffering from aphthous lesions. The first group was treated using standard means-by application of an oral gel containing cholin salicylate (Mundisal) on the aphthous lesion.
The preparation of liquisolid systems presents a promising and innovative possibility for enhancing dissolution profiles and improving the bioavailability of poorly soluble drugs. This study aims to evaluate the differences in the properties of liquisolid systems containing combinations of 3 commercially used superdisintegrants (sodium starch glycolate, crospovidone, and croscarmellose sodium). Multiple regression models and contour plots were used to study how the amount and the type of superdisintegrant used affected the quality parameters of liquisolid tablets.
View Article and Find Full Text PDFCharacteristics of the buccal mucoadhesive films (film thickness, film weight, uniformity of mass and moisture content) prepared by solvent casting method were tested in this experimental study. The formulations consisted either of one mucoadhesive polymer (sodium hyaluronate of two different molecular weights and sodium carboxymethylcellulose) or combinations thereof. On the basis of the aforementioned tests, it was determined that water content was influenced by the molecular weight of sodium hyaluronate as well as by the ratio of mucoadhesive polymers in the composition.
View Article and Find Full Text PDFContext: Mucoadhesive oral films, with their prolonged residence time at the site of application, offer a promising approach for protection of the oral lesion surface. The addition of sodium hyaluronate of different molecular weights as a second mucoadhesive polymer into the film matrix could positively influence the physico-mechanical and mucoadhesive properties of films.
Objective: The aim of this study was to investigate the formulation of a monolayered film matrix containing varying amounts of sodium hyaluronate and to test the properties of such matrices by applying different characterization methods.
Background: Prevalence of oral mucosal fungal infections increases with the frequent administration of antibiotics, corticosteroids and immunosuppressive drugs. Therapeutically used antifungals are usually associated with a variety of drug interactions. Furthermore, there has been a noticeable increase in microorganisms resistant to these preparations.
View Article and Find Full Text PDFUnlabelled: Oral films, namely buccal mucoadhesive films and orodispersible films represent innovative formulations for administration of a wide range of drugs. Oral films show many advantageous properties and are intended for systemic drug delivery or for local treatment of the oral mucosa. In both cases, the film represents a thin layer, which could be intended to adhere to the oral mucosa by means of mucoadhesion; or to rapid dissolution and subsequent swallowing without the need of liquid intake, in the case of orodispersible films.
View Article and Find Full Text PDFThe basic principle of liquisolid systems formulation lies in the conversion of the drug in a liquid state into an apparently dry, free-flowing and readily compressible powder by its blending (or spraying) with specific carriers and coating materials. The selection of the most suitable carrier and coating material depends especially on their values of flowable liquid retention potential (Φ), which is defined as the maximum mass of liquid that can be retained per unit mass of powder material, while maintaining an acceptable flowability. The presented work focused on the determination of the maximum amount of propylene glycol (PG), which can be retained by several selected carriers and coating materials while maintaining acceptable flow properties of the liquisolid powder blend.
View Article and Find Full Text PDF