Publications by authors named "Jan G Krummenacker"

Here we show how fast dynamics between radicals and solvent molecules in liquid solutions can be detected by comparison of coupling factors determined by nuclear magnetic relaxation dispersion (NMRD) measurements and dynamic nuclear polarization (DNP) enhancement measurements at high magnetic field (9.2 T). This is important for a theoretical understanding of the Overhauser DNP mechanism at high magnetic fields and thus for optimization of the DNP agent/target system for high resolution liquid state NMR applications.

View Article and Find Full Text PDF

We have performed liquid state ("Overhauser") Dynamic Nuclear Polarization (DNP) experiments at high magnetic field (9.2 T, corresponding to 260 GHz EPR and 400 MHz (1)H-NMR resonance frequency) on aqueous solutions of (14)N-TEMPOL nitroxide radicals. Integrated signal enhancements exceeding -80 were observed for the water protons at microwave superheated temperatures (160 °C) and still -14 at ambient temperatures (45 °C) relevant to biological applications.

View Article and Find Full Text PDF

We have used liquid state ("Overhauser") Dynamic Nuclear Polarization (DNP) to significantly enhance the signal to noise ratio (SNR) of Magnetic Resonance Imaging (MRI). For the first time this was achieved by hyperpolarizing directly in the MRI-scanner field of 1.5 T in continuous flow mode and immediately delivering the hyperpolarized substance to the imaging site to ensure maximum contrast between hyperpolarized sample and sample at thermal polarization.

View Article and Find Full Text PDF