Deoxynucleotide misincorporation efficiencies can span a wide 10-fold range, from ∼10 to ∼10, depending principally on polymerase (pol) identity and DNA sequence context. We have addressed DNA pol fidelity mechanisms from a transition-state (TS) perspective using our "tool-kit" of dATP- and dGTP-β,γ substrate analogues in which the pyrophosphate leaving group (p K = 8.9) has been replaced by a series of bisphosphonates covering a broad acidity range spanning p K values from 7.
View Article and Find Full Text PDFβ-Phosphoglucomutase (β-PGM) has served as an important model system for understanding biological phosphoryl transfer. This enzyme catalyzes the isomerization of β-glucose-1-phosphate to β-glucose-6-phosphate in a two-step process proceeding via a bisphosphate intermediate. The conventionally accepted mechanism is that both steps are concerted processes involving acid-base catalysis from a nearby aspartate (D10) side chain.
View Article and Find Full Text PDFHuman DNA polymerase λ is an intermediate fidelity member of the X family, which plays a role in DNA repair. Recent X-ray diffraction structures of a ternary complex of a loop-deletion mutant of polymerase λ, a deoxyguanosine triphosphate analogue, and a gapped DNA show that guanine and thymine form a mutagenic mispair with an unexpected Watson-Crick-like geometry rather than a wobble geometry. Hence, there is an intriguing possibility that either thymine in the DNA or guanine in the deoxyguanosine triphosphate analogue may spend a substantial fraction of time in a deprotonated or enol form (both are minor species in aqueous solution) in the active site of the polymerase λ mutant.
View Article and Find Full Text PDFThe synthesis and characterization of N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (Hbpcd) cationic complexes of La(III), Nd(III), and Sm(III) are reported. The Ln(III)-bpcd complex ions, where bpcd stands for N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetate, were isolated as PF salts. These salts were characterized by elemental analysis, X-ray crystallography, IR, and H and C NMR spectroscopy.
View Article and Find Full Text PDFHuman X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3'-OH group of the primer DNA strand, and the subsequent formation and cleavage of P-O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal mol for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2016
Cytochrome P450 1A2 (P450 1A2, CYP1A2) is a membrane-bound enzyme that oxidizes a broad range of hydrophobic substrates. The structure and dynamics of both the catalytic and trans-membrane (TM) domains of this enzyme in the membrane/water environment were investigated using a multiscale computational approach, including coarse-grained and all-atom molecular dynamics. Starting from the spontaneous self-assembly of the system containing the TM or soluble domain immersed in randomized dilauroyl phosphatidylcholine (DLPC)/water mixture into their respective membrane-bound forms, we reconstituted the membrane-bound structure of the full-length P450 1A2.
View Article and Find Full Text PDFEukaryotic cytochromes P450 (P450) are membrane-bound enzymes oxidizing a broad spectrum of hydrophobic substrates, including xenobiotics. Protein-protein interactions play a critical role in this process. In particular, the formation of transient complexes of P450 with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates catalytic activities of several P450s.
View Article and Find Full Text PDFThe synthesis of N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (H2bpcd) and its complexation of Ga(III) and Co(III) are reported. H2bpcd and the metal-bpcd(2-) complexes, isolated as hexafluorophosphate salts, were characterized by elemental analysis, X-ray crystallography, IR spectroscopy, and (1)H and (13)C NMR spectroscopy. [Ga(bpcd)]PF6, [Ga(C22H26N4O4)]PF6, crystallized in the orthorhombic space group Ibca, with a = 13.
View Article and Find Full Text PDFFormation of transient complexes of cytochrome P450 (P450) with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates the catalytic activities of several P450s. Therefore, we examined formation and binding modes of the complex of human P450 1A2 with cyt b5. Docking of soluble domains of these proteins was performed using an information-driven flexible docking approach implemented in HADDOCK.
View Article and Find Full Text PDFRate (k) and equilibrium (K) constants for the reaction of tetrahydrofuranol with a series of Mg(2+) complexes of methyl triphosphate analogues, CH3O-P(O2)-O-P(O2)-X-PO3(4-), X = O, CH2, CHCH3, C(CH3)2, CFCH3, CHF, CHCl, CHBr, CFCl, CF2, CCl2, and CBr2, forming phosphate diester and pyrophosphate or bisphosphonate in aqueous solution were evaluated by B3LYP/TZVP//HF/6-31G* quantum chemical calculations and Langevin dipoles and polarized continuum solvation models. The calculated log k and log K values were found to depend linearly on the experimental pKa4 of the conjugate acid of the corresponding pyrophosphate or bisphosphonate leaving group. The calculated slopes of these Brønsted linear free energy relationships were βlg = -0.
View Article and Find Full Text PDFA higher yield synthesis of N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetic acid (H2bppd) and its complexation of trivalent metal ions (Al(III), Ga(III), In(III)) and selected lanthanides (Ln(III)) are reported. H2bppd and the metal-bppd(2-) complexes, isolated as hexafluorophosphate salts, were characterized by elemental analysis, mass spectrometry, IR, and (1)H and (13)C NMR spectroscopy. [Ga(bppd)]PF6, [Ga(C19H22N4O4)]PF6, was crystallized as colorless needles by slow evaporation from anhydrous methanol; its molecular structure was solved by direct X-ray crystallography methods.
View Article and Find Full Text PDFThe two-metal catalysis by the adenylyl cyclase domain of the anthrax edema factor toxin was simulated using the empirical valence bond (EVB) quantum mechanical/molecular mechanical approach. These calculations considered the energetics of the nucleophile deprotonation and the formation of a new P-O bond in aqueous solution and in the enzyme-substrate complex present in the crystal structure models of the reactant and product states of the reaction. Our calculations support a reaction pathway that involves metal-assisted transfer of a proton from the nucleophile to the bulk aqueous solution followed by subsequent formation of an unstable pentavalent intermediate that decomposes into cAMP and pyrophosphate (PPi).
View Article and Find Full Text PDFWe carried out free-energy calculations and transient kinetic experiments for the insertion of the right (dC) and wrong (dA) nucleotides by wild-type (WT) and six mutant variants of human DNA polymerase β (Pol β). Since the mutated residues in the point mutants, I174S, I260Q, M282L, H285D, E288K, and K289M, were not located in the Pol β catalytic site, we assumed that the WT and its point mutants share the same dianionic phosphorane transition-state structure of the triphosphate moiety of deoxyribonucleotide 5'-triphosphate (dNTP) substrate. On the basis of this assumption, we have formulated a thermodynamic cycle for calculating relative dNTP insertion efficiencies, Ω = (k(pol)/K(D))(mut)/(k(pol)/K(D))(WT) using free-energy perturbation (FEP) and linear interaction energy (LIE) methods.
View Article and Find Full Text PDFTime-dependent motions of 32 deoxyribodinucleoside and ribodinucleoside monophosphate anions in aqueous solution at 310 K were monitored during 40 ns using classical molecular dynamics (MD). In all studied molecules, spontaneous stacking/unstacking transitions occurred on a time-scale of 10 ns. To facilitate the structural analysis of the sampled configurations we defined a reaction coordinate for the nucleobase stacking that considers both the angle between the planes of the two nucleobases and the distance between their mass-centers.
View Article and Find Full Text PDFThe role of the nonbonded CH···π interaction in the hydrogen abstraction from glycerol by the coenzyme B(12)-independent glycerol dehydratase (GDH) was examined using the QM/MM (ONIOM), MP2, and CCSD(T) methods. The studied CH···π interaction included the hydrogen atom of the -C(2)H(OH)- group of the glycerol substrate and the tyrosine-339 residue of the dehydratase. A contribution of this interaction to the stabilization of the transition state for the transfer of a hydrogen atom from the adjacent terminal C(1)H(2)(OH) group to cysteine 433 was determined by ab initio HF, MP2, and CCSD(T) calculations with the aug-cc-pvDZ basis set for the corresponding methane/benzene, methanol/phenol, and glycerol radical/phenol subsystems.
View Article and Find Full Text PDFWe show how a restricted reaction surface can be used to facilitate the calculation of biologically important contributions of active site geometries and dynamics to DNA polymerase fidelity. Our analysis, using human DNA polymerase beta (pol β), is performed within the framework of an electrostatic linear free energy response (EFER) model. The structure, dynamics, and energetics of pol β-DNA-dNTP interactions are computed between two points on the multidimensional reaction free energy surface.
View Article and Find Full Text PDFGlycerol binding and the radical-initiated hydrogen transfer by the coenzyme B(12)-independent glycerol dehydratase from Clostridium butyricum were investigated by using quantum mechanical/molecular mechanical (QM/MM) calculations based on the high-resolution crystal structure (PDB code: 1r9d). Our QM/MM calculations of enzyme catalysis considered the electrostatic coupling between the quantum-mechanical and molecular-mechanical subsystems and two alternative mechanisms. In addition to performing QM/MM calculations in the enzyme, we evaluated energetics along the same reaction pathway in aqueous solution modeled by the polarized dielectric and in the virtual enzyme site that included full steric component from the enzyme residues described by molecular mechanics but lacked the electrostatic contribution of these residues.
View Article and Find Full Text PDFThe insertion of a DNA base moiety at the end of a DNA duplex to form a Watson-Crick or wobble pair during DNA annealing or replication is a step of fundamental biological importance. Therefore, we investigated the energetics of a formation of the terminal G x C, G x T, and G x A base pairs in DNA containing a 5'-dangling G adjacent to the base insertion point using differential scanning calorimetry and computer simulations. The energies calculated along classical molecular dynamics trajectories in aqueous solution were analyzed in the framework of linear-response approximation (LRA) to obtain relative free energies for the base insertion and their electrostatic, van der Waals, and preorganization components.
View Article and Find Full Text PDFThe geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor.
View Article and Find Full Text PDFPhosphate monoester and anhydride hydrolysis is ubiquitous in biology, being involved in, amongst other things, signal transduction, energy production, and the regulation of protein function. Therefore, this reaction has understandably been the focus of intensive research. Nevertheless, the precise mechanism by which phosphate monoester hydrolysis proceeds remains controversial.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
February 2009
A series of systematically modified vanadyl-beta-diketone complexes, VO(beta-diketone)(2), bearing substituent groups with different electron inductive properties were synthesized and evaluated as inhibitors against calf-intestine alkaline phosphatase (APase). A combination of biochemical and quantum mechanical techniques were employed to identify structure-activity relationships relevant for rational design of phosphatase inhibitors. Kinetic parameters and activation free energy, enthalpy, and entropy for calf-intestine APase-catalyzed dephosphorylation of para-nitrophenylphosphate were also determined along with the inhibition constants (K(i)) for the VO(beta-diketone)(2) complexes.
View Article and Find Full Text PDFCalmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly ( approximately 200 pm affinity).
View Article and Find Full Text PDFThe mechanism of DNA polymerase beta-catalyzed nucleotidyl transfer consists of chemical steps involving primer 3' OH deprotonation, nucleophilic attack, and pyrophosphate leaving-group elimination, preceded by dNTP binding which induces a large-amplitude conformational change for Watson-Crick nascent base pairs. Ambiguity in the nature of the rate-limiting step and active-site structural differences between correct and incorrect base-paired transition states remain obstacles to understanding DNA replication fidelity. Analogues of dGTP where the beta-gamma bridging oxygen is replaced with fluorine-substituted methylene groups have been shown to probe the contribution of leaving-group elimination to the overall catalytic rate (Biochemistry 46, 461-471).
View Article and Find Full Text PDFThe choreography of restriction endonuclease catalysis is a long-standing paradigm in molecular biology. Bivalent metal ions are required almost for all PD..
View Article and Find Full Text PDF