Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-target interactions, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of the drug selectivity and efficacy.
View Article and Find Full Text PDFIn this paper, we would like to introduce a unique dataset that covers thousands of network flow measurements realized through TCP in a data center environment. The TCP protocol is widely used for reliable data transfers and has many different versions. The various versions of TCP are specific in how they deal with link congestion through the congestion control algorithm (CCA).
View Article and Find Full Text PDFCovalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues.
View Article and Find Full Text PDFEndogenous antibodies, or immunoglobulins (Igs), abundantly present in body fluids, represent some of the most challenging samples to analyze, largely due to the immense variability in their sequences and concentrations. It has been estimated that our body can produce billions of different Ig proteins with different isotypes, making their individual analysis seemingly impossible. However, recent advances in protein-centric proteomics using LC-MS coupled to Orbitrap mass analyzers to profile intact Fab fragments formed by selective cleavage at the IgG-hinge revealed that IgG repertoires may be less diverse, albeit unique for each donor.
View Article and Find Full Text PDFUsing a user DNS fingerprint allows one to identify a specific network user regardless of the knowledge of his IP address. This method is proper, for example, when examining the behavior of a monitored network user in more depth. In contrast to other studies, this work introduces a dataset for possible user identification based only on the knowledge of its DNS fingerprint created from the previously sent DNS queries.
View Article and Find Full Text PDFIntermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12).
View Article and Find Full Text PDFFast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples.
View Article and Find Full Text PDFA combination of covalent labeling techniques and mass spectrometry (MS) is currently a progressive approach for deriving insights related to the mapping of protein surfaces or protein-ligand interactions. In this study, we mapped an interaction interface between the DNA binding domain (DBD) of FOXO4 protein and the DNA binding element (DAF16) using fast photochemical oxidation of proteins (FPOP). Residues involved in protein-DNA interaction were identified using the bottom-up approach.
View Article and Find Full Text PDFCovalent labeling of proteins in combination with mass spectrometry has been established as a complementary technique to classical structural methods, such as X-ray, NMR, or cryogenic electron microscopy (Cryo-EM), used for protein structure determination. Although the current covalent labeling techniques enable the protein solvent accessible areas with sufficient spatial resolution to be monitored, there is still high demand for alternative, less complicated, and inexpensive approaches. Here, we introduce a new covalent labeling method based on fast fluoroalkylation of proteins (FFAP).
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
February 2022
Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) - haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation.
View Article and Find Full Text PDFGiven the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision.
View Article and Find Full Text PDFFast photochemical oxidation of proteins (FPOP) is a recently developed technique for studying protein folding, conformations, interactions, etc. In this method, hydroxyl radicals, usually generated by KrF laser photolysis of HO, are used for irreversible labeling of solvent-exposed side chains of amino acids. Mapping of the oxidized residues to the protein's structure requires pinpointing of modifications using a bottom-up proteomic approach.
View Article and Find Full Text PDFTEAD transcription factors regulate gene expression through interactions with DNA and other proteins. They are crucial for the development of eukaryotic organisms and to control the expression of genes involved mostly in cell proliferation and differentiation; however, their deregulation can lead to tumorigenesis. To study the interactions of TEAD1 with M-CAT motifs and their inverted versions, the K of each complex was determined, and H/D exchange, quantitative chemical cross-linking, molecular docking, and smFRET were utilized for structural characterization.
View Article and Find Full Text PDFThe molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains.
View Article and Find Full Text PDFThe combination of chemical cross-linking and mass spectrometry is currently a progressive technology for deriving structural information of proteins and protein complexes. In addition, chemical cross-linking is a powerful tool for stabilizing macromolecular complexes for single particle cryo-electron microscopy. Broad pallets of cross-linking chemistry, currently available for the majority of cross-linking experiments, still rely on the amine-reactive N-hydroxysuccinimide esters targeting mainly N-termini and lysine side chains.
View Article and Find Full Text PDFThe limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family.
View Article and Find Full Text PDF