Publications by authors named "Jan Fassler"

Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.

View Article and Find Full Text PDF
Article Synopsis
  • The Mediator complex's protein-protein interaction network is crucially regulated by various developmental and environmental factors.
  • MediatorWeb is a user-friendly web platform that allows for comparative analysis and visualization of Mediator subunits from humans, yeast, and plants, providing access to untargeted network data and functional annotations.
  • It also offers structural information and interolog detection to help users understand the Mediator complex's role in gene transcription regulation across different species.
View Article and Find Full Text PDF

Opportunistic yeast pathogens arose multiple times in the Saccharomycetes class, including the recently emerged, multidrug-resistant (MDR) Candida auris. We show that homologs of a known yeast adhesin family in Candida albicans, the Hyr/Iff-like (Hil) family, are enriched in distinct clades of Candida species as a result of multiple, independent expansions. Following gene duplication, the tandem repeat-rich region in these proteins diverged extremely rapidly and generated large variations in length and β-aggregation potential, both of which are known to directly affect adhesion.

View Article and Find Full Text PDF

The propensity for yeast to ferment sugars into ethanol and CO has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes.

View Article and Find Full Text PDF

Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation.

View Article and Find Full Text PDF

The Wnt/β-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/β-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor β-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, β-catenin regulation, and posttranslational modifications.

View Article and Find Full Text PDF

Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward.

View Article and Find Full Text PDF

The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition.

View Article and Find Full Text PDF

The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals.

View Article and Find Full Text PDF

The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans.

View Article and Find Full Text PDF

The histidine kinase-based phosphorelay has emerged as a common strategy among bacteria, fungi, protozoa, and plants for triggering important stress responses and interpreting developmental cues in response to environmental as well as chemical, nutritional, and hormone signals. The absence of this type of signaling mechanism in animals makes the so-called "two-component" pathway an attractive target for development of antimicrobial agents. The best-studied eukaryotic example of a two-component pathway is the SLN1 pathway in Saccharomyces cerevisiae, which responds to turgor and other physical properties associated with the fungal cell wall.

View Article and Find Full Text PDF

The histidine kinase-based signal transduction pathway was first uncovered in bacteria and is a prominent form of regulation in prokaryotes. However, this type of signal transduction is not unique to prokaryotes; over the last decade two-component signal transduction pathways have been identified and characterized in diverse eukaryotes, from unicellular yeasts to multicellular land plants. A number of small but important differences have been noted in the architecture and function of eukaryotic pathways.

View Article and Find Full Text PDF

The bifunctional Saccharomyces cerevisiae Skn7 transcription factor regulates osmotic stress response genes as well as oxidative stress response genes; however, the mechanisms involved in these two types of regulation differ. Skn7 osmotic stress activity depends on the phosphorylation of the receiver domain aspartate, D427, by the Sln1 histidine kinase. In contrast, D427 and the SLN1-SKN7 phosphorelay are dispensable for the oxidative stress response, although the receiver domain is required.

View Article and Find Full Text PDF

The yeast Sln1p sensor kinase is best known as an osmosensor involved in the regulation of the hyperosmolarity glycerol mitogen-activated protein kinase cascade. Down-regulation of Sln1 kinase activity occurs under hypertonic conditions and leads to phosphorylation of the Hog1p mitogen-activated protein kinase and increased osmotic stress-response gene expression. Conditions leading to kinase up-regulation include osmotic imbalance caused by glycerol retention in the glycerol channel mutant, fps1 (Tao, W.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Yap1p and Skn7p transcription factors collaborate in the activation of oxidative stress response (OSR) genes. Although Yap1p and Skn7p oxidative stress response elements (YRE, OSRE) have been characterized and identified in some OSR genes, many OSR genes lack such elements. In this study, the complex, oxidative responsive, CCP1 promoter was used as a model to investigate the cis-acting elements responsible for activation by oxidative stress.

View Article and Find Full Text PDF

Yeast Sln1p is an osmotic stress sensor with histidine kinase activity. Modulation of Sln1 kinase activity in response to changes in the osmotic environment regulates the activity of the osmotic response mitogen-activated protein kinase pathway and the activity of the Skn7p transcription factor, both important for adaptation to changing osmotic stress conditions. Many aspects of Sln1 function, such as how kinase activity is regulated to allow a rapid response to the continually changing osmotic environment, are not understood.

View Article and Find Full Text PDF

Sln1p is a plasma membrane-localized two-component histidine kinase that functions as an osmotic stress sensor in Saccharomyces cerevisiae. Changes in osmotic pressure modulate Sln1p kinase activity, which, together with Ypd1p, a phosphorelay intermediate, changes the phosphorylation status of two response regulators, Ssk1p and Skn7p. Ssk1p controls the activity of the HOG1 mitogen-activated protein kinase pathway.

View Article and Find Full Text PDF

The basic region-leucine zipper (B-ZIP) (bZIP) protein motif dimerizes to bind specific DNA sequences. We have identified 27 B-ZIP proteins in the recently sequenced Drosophila melanogaster genome. The dimerization specificity of these 27 B-ZIP proteins was evaluated using two structural criteria: (1) the presence of attractive or repulsive interhelical g<-->e' electrostatic interactions and (2) the presence of polar or charged amino acids in the 'a' and 'd' positions of the hydrophobic interface.

View Article and Find Full Text PDF

The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear.

View Article and Find Full Text PDF

The yeast "two-component" osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress.

View Article and Find Full Text PDF

REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes.

View Article and Find Full Text PDF