Publications by authors named "Jan Eijkel"

Continuous particle focusing by using microfluidics is an effective method for separating particles, cells, or droplets for analytical purposes. Previously, it was shown that an alternating current across rectangular microchannels with slightly deformed side walls results in vortex flow patterns caused by alternating current electroosmosis (AC-EOF) and could lead to particle focusing. In this work, we explore this mechanism by experimentally studying the particle focusing behavior for various fluid flow velocities through a microchannel.

View Article and Find Full Text PDF
Article Synopsis
  • Coke formation on catalysts leads to deactivation by blocking surfaces needed for reactions, posing a challenge in various industrial chemical processes.
  • The study introduces tip-enhanced Raman spectroscopy (TERS) to identify and localize coke deposits on metal nanocatalysts, providing in-depth insights that conventional methods miss.
  • Findings reveal diverse types of coke at nanoscale locations, uneven distribution on catalysts, and suggest that improved rejuvenation methods could enhance catalyst longevity by better managing coke buildup.
View Article and Find Full Text PDF

The performance of liquid chromatography operation in open-tubular channels, the ideal chromatographic column format, is limited by slow mass transport between the mobile and stationary phase. We recently introduced a lateral mixing methodology ("vortex chromatography") to reduce Taylor-Aris dispersion by employing (small) AC-EOF (alternating current electroosmotic flow) fields oriented perpendicular to the conventionally applied, axially oriented pressure gradient, resulting in the reduction of the C-term by a factor of 3, studied in 40 × 20 μm (aspect ratio (AR) = 2) channels under unretained conditions. In the present contribution, a further increased performance gain for channel dimensions relevant for chromatographic applications is demonstrated.

View Article and Find Full Text PDF

Endotoxin is a deadly pyrogen, rendering it crucial to monitor with high accuracy and efficiency. However, current endotoxin detection relies on multistep processes that are labor-intensive, time-consuming, and unsustainable. Here, we report an aptamer-based biosensor for the real-time optical detection of endotoxin.

View Article and Find Full Text PDF

Acoustically induced secondary flows are applied to enhance lateral mass transfer beyond the relatively slow diffusion. This has the goal to reduce convective axial dispersion and the resulting band broadening which, in turn, limits the performance of column chromatography. Traditional approaches based on Taylor-Aris model are limited to one-dimensional rectilinear (unidirectional) tube- or channel-flows.

View Article and Find Full Text PDF

The removal of microbubbles from substrates is crucial for the efficiency of many catalytic and electrochemical gas evolution reactions in liquids. The current work investigates the coalescence and detachment of bubbles generated from catalytic decomposition of hydrogen peroxide. Self-propelled detachment, induced by the coalescence of two bubbles, is observed at sizes much smaller than those determined by buoyancy.

View Article and Find Full Text PDF

The need for measurements of multiple biomarkers simultaneously at subnanomolar concentrations asks for the development of new sensors with high sensitivity, specificity, precision, and accuracy. Currently, multiplexed sensing in single molecule sensors increases the complexity of the system in terms of reagents and sample read-out. In this letter, we propose a novel approach to multiplex hairpin-based single-DNA molecule sensors, which overcomes the limitations of the present approaches for multiplexing.

View Article and Find Full Text PDF

The excellent specificity and selectivity of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/associated nuclease (Cas) is determined by CRISPR RNA's (crRNA's) interchangeable spacer sequence, as well as the position and number of mismatches between target sequence and the crRNA sequence. Some diseases are characterized by epigenetic alterations rather than nucleotide changes, and are therefore unsuitable for CRISPR-assisted sensing methods. Here we demonstrate an in vitro diagnostic tool to discriminate single CpG site methylation in DNA by the use of methylation-sensitive restriction enzymes (MSREs) followed by Cas12a-assisted sensing.

View Article and Find Full Text PDF

In this paper, we report on a capillary microfluidic device with constant flow rate and temperature-triggered stop valve function. It contains a PDMS channel that was grafted by a thermo-responsive polymer poly(N-isopropylacrylamide) (PNIPAm). The channel exhibits a constant capillary filling speed.

View Article and Find Full Text PDF

Classically, the configuration of electrodes (conductors) is used as a means to determine AC-electroosmotic flow patterns. In this paper, we use the configuration of insulator materials to achieve AC-electroosmotic flow patterning in a novel approach. We apply AC electric fields between parallel electrodes situated on the top and bottom of a microfluidic channel and separated by an insulating material.

View Article and Find Full Text PDF

Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction.

View Article and Find Full Text PDF

Microfluidic devices are used extensively in the development of new in vitro cell culture models like organs-on-chips. A typical feature of such devices is the patterning of biological hydrogels to offer cultured cells and tissues a controlled three-dimensional microenvironment. A key challenge of hydrogel patterning is ensuring geometrical confinement of the gel, which is generally solved by inclusion of micropillars or phaseguides in the channels.

View Article and Find Full Text PDF

Organ-on-a-chip devices have been widely used in biomedical science and technology, for example for experimental regenerative medicine and precision healthcare. The main advantage of organ-on-a-chip technology is the facility to build a specific human model that has functional responses on the level of organs or tissues, thereby avoiding the use of animal models, as well as greatly improving new drug discovery processes for personal healthcare. An emerging application domain for organs-on-chips is the study of internal irradiation for humans, which faces the challenges of the lack of a clear model for risk estimation of internal irradiation.

View Article and Find Full Text PDF

Chromatographic columns are suffering from Taylor-Aris dispersion, especially for slowly diffusing molecules such as proteins. Since downscaling the channel size to reduce Taylor-Aris dispersion meets fundamental pressure limitations, new strategies are needed to further improve chromatography beyond its current limits. In this work we demonstrate a method to reduce Taylor-Aris dispersion by lateral mixing in a newly designed silicon AC-electroosmotic flow mixer.

View Article and Find Full Text PDF

Hierarchical plasmonic-photonic microspheres (PPMs) with high controllability in their structures and optical properties have been explored toward surface-enhanced Raman spectroscopy. The PPMs consist of gold nanocrystal (AuNC) arrays (3rd-tier) anchored on a hexagonal nanopattern (2nd-tier) assembled from silica nanoparticles (SiONPs) where the uniform microsphere backbone is termed the 1st-tier. The PPMs sustain both photonic stop band (PSB) properties, resulting from periodic SiONP arrangements of the 2nd-tier, and a surface plasmon resonance (SPR), resulting from AuNC arrays of the 3rd-tier.

View Article and Find Full Text PDF

With the trend of moving molecular tests from clinical laboratories to on-site testing, there is a need for nucleic acid based diagnostic tools combining the sensitivity, specificity and flexibility of established diagnostics with the ease, cost effectiveness and speed of isothermal amplification and detection methods. A promising new nucleic acid detection method is Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas)-based sensing. In this method Cas effector proteins are used as highly specific sequence recognition elements that can be combined with many different read-out methods for on-site point-of-care testing.

View Article and Find Full Text PDF

Lab-on-chip electrokinetic focusing and separation techniques are widely used in several scientific fields. In a number of cases, these techniques have been combined with a selective analyte extraction for off-chip analysis. Nevertheless, the usability of the extracts is limited by diffusion which reduces the separation resolution.

View Article and Find Full Text PDF

A robust and facile method has been developed to obtain directional growth of silica nanowires (SiO NWs) by regulating mass transport of silicon monoxide (SiO) vapor. SiO NWs are grown by vapor-liquid-solid (VLS) process on a surface of gold-covered spherical photonic crystals (SPCs) annealed at high temperature in an inert gas atmosphere in the vicinity of a SiO source. The SPCs are prepared from droplet confined colloidal self-assembly.

View Article and Find Full Text PDF

Electrokinetic separation techniques in microfluidics are a powerful analytical chemistry tool, although an inherent limitation of microfluidics is their low sample throughput. In this article we report a free-flow variant of an electrokinetic focusing method, namely ion concentration polarization focusing (ICPF). The analytes flow continuously through the system via pressure driven flow while they separate and concentrate perpendicularly to the flow by ICPF.

View Article and Find Full Text PDF

Dimensions and surface properties are the predominant factors for the applications of nanofluidic devices. Here we use a thin liquid film as a nanochannel by inserting a gas bubble in a glass capillary, a technique we name bubble-based film nanofluidics. The height of the film nanochannel can be regulated by the Debye length and wettability, while the length independently changed by applied pressure.

View Article and Find Full Text PDF

Under continuous laser irradiation, noble metal nanoparticles immersed in water can quickly heat up, leading to the nucleation of so-called plasmonic bubbles. In this work, we want to further understand the bubble nucleation and growth mechanism. In particular, we quantitatively study the effect of the amount of dissolved air on the bubble nucleation and growth dynamics, both for the initial giant bubble, which forms shortly after switching on the laser and is mainly composed of vapor, and for the final life phase of the bubble, during which it mainly contains air expelled from water.

View Article and Find Full Text PDF

Electrokinetic focusing and separation methods, specifically ion concentration polarization focusing (ICPF), provide a very powerful and easy to use analytical tool for several scientific fields. Nevertheless, the concentrated and separated analytes are effectively trapped inside the chip in picoliter volumes. In this article we propose an ICPF device that allows continuous and selective extraction of the focused analytes.

View Article and Find Full Text PDF

Microparticle porosity is normally determined in bulk manner providing an ensemble average that hinders establishing the individual role of each microparticle. On the other hand, single particle characterization implies expensive technology. We propose to use ion concentration polarization to measure differences in mesoporosity at the single particle level.

View Article and Find Full Text PDF

We report a robust and high-yield fabrication method for wafer-scale patterning of high-quality arrays of dense gold nanogaps, combining displacement Talbot lithography based shrink-etching with dry etching, wet etching, and thin film deposition techniques. By using the self-sharpening of <111>-oriented silicon crystal planes during the wet etching process, silicon structures with extremely smooth nanogaps are obtained. Subsequent conformal deposition of a silicon nitride layer and a gold layer results in dense arrays of narrow gold nanogaps.

View Article and Find Full Text PDF

We found that continuous films of gold (Au) on oxidized silicon (SiO) substrates, upon treatment with ultraviolet (UV)-ozone, exhibit strong adhesion to the SiO support. Importantly, the enhancement is independent of micro- or nanostructuring of such nanometer-thick films. Deposition of a second Au layer on top of the pretreated Au layer makes the adhesion stable for at least 5 months in environmental air.

View Article and Find Full Text PDF