Publications by authors named "Jan E. Ehlert"

Background: Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis. GMB are highly recurrent mainly because of radio- and chemoresistance. Radiotherapy with Temozolomide (TMZ) is until today the golden standard adjuvant therapy, however, the optimal treatment of recurrent glioblastoma remains controversial.

View Article and Find Full Text PDF

Patients with FLT3-ITD mutated (FLT3-ITD+) Acute Myeloid Leukemia (AML), have frequently relapsed or refractory disease and FLT3-ITD+ inhibitors have limited efficacy. Rho kinases (ROCK) are constitutively activated by FLT3-ITD+ in AML via PI3 kinase and Rho GTPase. Upon activation by ROCK, LIM kinases (LIMK) inactivate cofilin by phosphorylation which affects cytoskeleton dynamics, cell growth and apoptosis.

View Article and Find Full Text PDF

Detailed structure activity relationship of two series of quinazoline EHMT1/EHMT2 inhibitors (UNC0224 and UNC0638) have been elaborated. New and active alternatives are presented for the ubiquitous substitution patterns found in literature for the linker to the lysine mimicking region and the lysine mimic itself. These findings could allow for advancing EHMT1/EHMT2 inhibitors of that type beyond tool compounds by fine-tuning physicochemical properties making these inhibitors more drug-like.

View Article and Find Full Text PDF

Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD leukemia cells. This synergized with the allogeneic CD8 T cell response, leading to long-term survival in six mouse models of FLT3-ITD AML.

View Article and Find Full Text PDF

Many receptor tyrosine kinases (RTKs) represent bona fide drug targets in oncology. Effective compounds are available, but treatment invariably leads to resistance, often due to RTK mutations. The discovery of second-generation inhibitors requires cellular models of resistant RTKs.

View Article and Find Full Text PDF

In the course of searching for new p38α MAP kinase inhibitors, we found that the regioisomeric switch from 3-(4-fluorophenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine led to an almost complete loss of p38α inhibition, but they showed activity against important cancer kinases. Among the tested derivatives, 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1H-pyrazol-5-amine (6a) exhibited the best activity, with IC(50) in the nanomolar range against Src, B-Raf wt, B-Raf V600E, EGFRs, and VEGFR-2, making it a good lead for novel anticancer programs.

View Article and Find Full Text PDF

To develop multikinase inhibitors with dual PLK1/VEGF-R2 inhibitory activity, the d-annulated 1-benzazepin-2-one scaffold present in the paullone family of kinase inhibitors was investigated as a general structure template suitable for anchoring annulated heterocycles at the hinge region of the ATP binding site. For this purpose, the indole substructure of the paullones was replaced by other nitrogen containing heteroaromatics. The designed scaffolds were synthesized and tested on the indicated kinases.

View Article and Find Full Text PDF

Based on an (aminoaryl)benzothiazole quinazoline hit structure for kinase inhibition, a systematic optimization program resulted in a lead structure allowing for inhibitory activities in cellular phosphorylation assays in the low nanomolar range.

View Article and Find Full Text PDF

Chemokines are recognized as functionally important in many pathological disorders, which has led to increased interest in mechanisms related to the regulation of chemokine receptor (CKR) expression. Known mechanisms for regulating CKR activity are changes in gene expression or posttranslational modifications. However, little is known about CKR with respect to a third regulatory mechanism, which is observed among other seven-transmembrane receptor subfamilies, the concept of differential splicing or processing of heteronuclear RNA.

View Article and Find Full Text PDF

Angiogenesis, defined as the growth of new capillaries from pre-existing vessels, is a pervasive biological phenomenon that is at the core of many physiologic and pathologic processes such as tumor growth. The use of human tumor xenografts in immunodeficient mice has provided significant insight into the biology of angiogenesis as it relates to tumor growth and metastasis. Work reviewed in this article supports the notion that net tumor-derived angiogenesis during tumorigenesis of human tumors is determined, in part, by an imbalance in favor of the overexpression of angiogenic (compared with angiostatic) juxtaposed cysteine residue (CXC) chemokines.

View Article and Find Full Text PDF