A new kind of self-assembly model, morphogenetic (M) systems, assembles spatial units into larger structures through local interactions of simpler components and enables discovery of new principles for cellular membrane assembly, development, and its interface function. The model is based on interactions among three kinds of constitutive objects such as tiles and protein-like elements in discrete time and continuous 3D space. It was motivated by achieving a balance between three conflicting goals: biological, physical-chemical, and computational realism.
View Article and Find Full Text PDFM systems are mathematical models of morphogenesis developed to gain insights into its relations to phenomena such as self-assembly, self-controlled growth, homeostasis, self-healing and self-reproduction, in both natural and artificial systems. M systems rely on basic principles of membrane computing and self-assembly, as well as explicit emphasis on geometrical structures (location and shape) in 2D, 3D or higher dimensional Euclidean spaces. They can be used for principled studies of these phenomena, both theoretically and experimentally, at a computational level abstracted from their detailed implementation.
View Article and Find Full Text PDF