Publications by authors named "Jan Dolzer"

Olfactory receptor neurons (ORNs) of the hawkmoth Manduca sexta sensitize via cAMP- and adapt via cGMP-dependent mechanisms. Perforated patch clamp recordings distinguished 11 currents in these ORNs. Derivatives of cAMP and/or cGMP antagonistically affected three of five K currents and two non-specific cation currents.

View Article and Find Full Text PDF

In the almost four decades since its inception, the patch clamp technique has transitioned from a specialist skill to a method commonly used among many others in a lab. Development of patch clamp instrumentation has not been steady: A boost of product releases in rapid succession by multiple manufacturers in the 1990s had slowed to a trickle by the mid-2000s. In 2016, Sutter Instrument's entry into the market of turnkey patch clamp amplifier systems, defined as an amplifier with matching data acquisition hardware and software, caused a fresh breeze in a field in danger of going stale.

View Article and Find Full Text PDF

In the hawkmoth Manduca sexta, pheromone stimuli of different strength and duration rise the intracellular Ca2+ concentration in olfactory receptor neurons (ORNs). While second-long pheromone stimuli activate protein kinase C (PKC), which apparently underlies processes of short-term adaptation, minute-long pheromone stimuli elevate cyclic guanosine monophosphate (cGMP) concentrations, which correlates with time courses of long-term adaptation. To identify ion channels involved in the sliding adjustment of olfactory sensitivity, inside-out patch clamp recordings on cultured ORNs of M.

View Article and Find Full Text PDF

Pheromone-dependent mate search is under strict circadian control in different moth species. But it remains unknown whether daytime-dependent changes in pheromone sensitivity already occur at the periphery in male moths. Because adapting pheromone stimuli cause rises of cyclic guanosine monophosphate (cGMP) in pheromone-sensitive trichoid sensilla of the night-active hawkmoth Manduca sexta, we wanted to determine whether cGMP decreases pheromone-sensitivity of olfactory receptor neurons in a daytime-dependent manner.

View Article and Find Full Text PDF

In extracellular tip recordings from long trichoid sensilla of male Manduca sexta moths, we studied dose-response relationships in response to bombykal stimuli of two different durations in the adapted and the non-adapted state. Bombykal-responsive cells could be distinguished from non-bombykal-sensitive cells in each trichoid sensillum because the bombykal-responsive cell always generated the action potentials of larger initial amplitude. The bombykal cell, which was recorded at a defined location within a distal flagellar annulus, can resolve at least four log(10)-units of pheromone concentrations but is apparently unable to encode all stimulus durations tested.

View Article and Find Full Text PDF