Publications by authors named "Jan Dittli"

Background: Robotic hand orthoses (RHO) aim to provide grasp assistance for people with sensorimotor hand impairment during daily tasks. Many of such devices have been shown to bring a functional benefit to the user. However, assessing functional benefit is not sufficient to evaluate the usability of such technologies for daily life application.

View Article and Find Full Text PDF

Neurological disorders such as traumatic brain injuries (TBI) can lead to hand impairments in children, negatively impacting their quality of life. Fully wearable robotic hand orthoses (RHO) have been proposed to actively support children and promote the use of the impaired limb in daily life. Here we report a case study on the feasibility of using the pediatric RHO PEXO for assistance at home in a 13- year-old child with hand impairment after TBI.

View Article and Find Full Text PDF

Children affected by hand impairment due to cerebral palsy or stroke experience serious difficulties when performing activities of daily life (ADL), which reduces their quality of life and development. Wearable robots such as hand exoskeletons have been proposed to support people with hand impairment in therapy as well as daily tasks. While numerous actuated wearable robots have been developed, few designs support both fingers and wrist function, despite being mutually relevant for reach-to-grasp tasks.

View Article and Find Full Text PDF

Wearable robotic upper limb orthoses (ULO) are promising tools to assist or enhance the upper-limb function of their users. While the functionality of these devices has continuously increased, the robust and reliable detection of the user's intention to control the available degrees of freedom remains a major challenge and a barrier for acceptance. As the information interface between device and user, the intention detection strategy (IDS) has a crucial impact on the usability of the overall device.

View Article and Find Full Text PDF

Background: Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability.

View Article and Find Full Text PDF

Wearable robots assist individuals with sensorimotor impairment in daily life, or support industrial workers in physically demanding tasks. In such scenarios, low mass and compact design are crucial factors for device acceptance. Remote actuation systems (RAS) have emerged as a popular approach in wearable robots to reduce perceived weight and increase usability.

View Article and Find Full Text PDF

Children with hand motor impairment due to cerebral palsy, traumatic brain injury, or pediatric stroke are considerably affected in their independence, development, and quality of life. Treatment conventionally includes task-oriented training in occupational therapy. While dose and intensity of hand therapy can be promoted through technology, these approaches are mostly limited to large stationary robotic devices for non-task-oriented training, or passive wearable devices for children with mild impairments.

View Article and Find Full Text PDF