Publications by authors named "Jan Delcour"

The effect of amylose-lipid (AM-L) complexes consisting of amylose populations with different peak degrees of polymerization (DP) and complexed with glyceryl monostearate (GMS) or docosanoic acid (C22) on the pasting properties of wheat and rice starches was evaluated with a rapid visco analyzer (RVA). AM-L complexes were formed by both (i) addition of lipids to amylose fractions with peak DP 20, 60, 400, or 950 at 60 degrees C or (ii) potato phosphorylase-catalyzed amylose synthesis in the presence of lipids. All AM-L complexes affected pasting properties in line with their dissociation characteristics.

View Article and Find Full Text PDF

Wheat endoxylanase inhibitor TAXI-I inhibits microbial glycoside hydrolase family 11 endoxylanases. Crystallographic data of an Aspergillus niger endoxylanase-TAXI-I complex showed His374 of TAXI-I to be a key residue in endoxylanase inhibition. Its role in enzyme-inhibitor interaction was further investigated by site-directed mutagenesis of His374 into alanine, glutamine or lysine.

View Article and Find Full Text PDF

The relationship between syruping in refrigerated doughs upon prolonged storage and different aspects of arabinoxylan (AX) hydrolysis was investigated using Triticum aestivum xylanase inhibitor (TAXI) and different xylanases in the dough formula. Dough characteristics were evaluated with strong emphasis on the AX population and its fate as a function of storage time. Selective reduction of part of the flour endogenous xylanase activity in dough by added TAXI reduced dough syruping after 12 and 20 days of storage by 50%, providing straightforward evidence for the involvement of xylanases and, thus, AX in the syruping phenomenon.

View Article and Find Full Text PDF

On-line size-exclusion chromatography monitoring of potato phosphorylase catalyzed amylose synthesis--starting from alpha-D-glucose-1-P and maltohexaose--revealed rather monodisperse amylose populations. In the presence of lipids, amylose-lipid complexes spontaneously formed and precipitated. They were recovered by centrifugation, freeze-dried, and characterized by wide-angle X-ray diffraction and differential scanning calorimetry.

View Article and Find Full Text PDF

The impacts of the arabinose to xylose (A/X) ratio of arabinoxylans (AX) and the endoxylanase substrate specificity on the enzymic degradability of hull-less barley flour AX by endoxylanases were studied by using alkali-solubilized AX (AS-AX) fractions with different A/X ratio, on the one hand, and glycoside hydrolase family 10 and 11 endoxylanases of Aspergillus aculeatus (XAA) and Bacillus subtilis (XBS), respectively, on the other hand. AS-AX were obtained by saturated barium hydroxide treatment of hull-less barley flour water-unextractable AX. Fractionation of AS-AX by stepwise ethanol precipitation resulted in structurally different hull-less barley flour AS-AX fractions.

View Article and Find Full Text PDF

Wheat grains contain Triticum aestivum xylanase inhibitor (TAXI) proteins which inhibit microbial xylanases, some of which are used in cereal based food industries. These inhibitors may play a role in plant defence. Among the TAXI isoforms described so far, TAXI-II displays a deviating inhibition specificity pattern.

View Article and Find Full Text PDF

A rice XIP-type inhibitor was purified by affinity chromatography with an immobilized Aspergillus aculeatus family 10 endoxylanase. Rice XIP is a monomeric protein, with a molecular mass of ca. 32 kDa and a pI of ca.

View Article and Find Full Text PDF

The relative activity of an endoxylanase towards water-unextractable (WU-AX) and water-extractable arabinoxylan (WE-AX) substrates, referred to as endoxylanase substrate selectivity, impacts the enzyme functionality in cereal-based biotechnological processes such as bread-making and gluten starch separation. A set of six endoxylanases representing a range of substrate selectivities as determined by a screening method using chromophoric substrates [Anal. Biochem.

View Article and Find Full Text PDF

Water-extractable arabinoxylan (WE-AX) of variable molecular weight (MW) and water-unextractable arabinoxylan (WU-AX) were added to wheat flour to study their effect on gluten agglomeration in a dough and batter gluten-starch separation process with recovery of gluten from the batter with a set of vibrating sieves (400, 250, and 125 microm). Low MW WE-AX had almost no impact on the distribution of the gluten on the different sieves. High MW WE-AX decreased yields of the largest (400 microm sieve) gluten aggregates, more than their medium MW counterparts, indicating the importance of AX MW for their effect on gluten interactions.

View Article and Find Full Text PDF

For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches.

View Article and Find Full Text PDF

Triticum aestivum xylanase inhibitor I (TAXI-I) is a wheat protein that inhibits microbial xylanases belonging to glycoside hydrolase family 11. In the present study, recombinant TAXI-I (rTAXI-I) was successfully produced by the methylotrophic yeast Pichia pastoris at high expression levels (approximately 75 mg/L). The rTAXI-I protein was purified from the P.

View Article and Find Full Text PDF

We recently discovered that wheat gluten could be formed into a tough, plasticlike substance when thiol-terminated, star-branched molecules are incorporated directly into the protein structure. This discovery offers the exciting possibility of developing biodegradable high-performance engineering plastics and composites from renewable resources that are competitive with their synthetic counterparts. Wheat gluten powder is available at a cost of less than dollars 0.

View Article and Find Full Text PDF

A Bacillus subtilis endoxylanase (XBS(i)) sensitive to inhibition by Triticum aestivum L. endoxylanase inhibitor (TAXI) and a mutant thereof (XBS(ni)), uninhibited by TAXI, were used in straight-dough breadmaking to assess the importance of endoxylanase inhibition sensitivity on endoxylanase functionality in the process. With two European wheat flours, the loaf volume improving effect of XBS(ni) at much lower enzyme dosages was substantially larger than that brought about by XBS(i).

View Article and Find Full Text PDF

Inulin (general formulas GFn and Fm, with G = anhydroglucose and F = anhydrofructose) naturally occurs as a homologous series of oligo- and polysaccharides with different chain lengths. For reasons of growing interest in the food and pet food industries, the short chain inulins have to be separated from their long chain analogues because their properties (digestibility, prebiotic activity and health promoting potential, caloric value, sweetening power, water binding capacity, etc.) differ substantially.

View Article and Find Full Text PDF

Plants developed a diverse battery of defense mechanisms in response to continual challenges by a broad spectrum of pathogenic microorganisms. Their defense arsenal includes inhibitors of cell wall-degrading enzymes, which hinder a possible invasion and colonization by antagonists. The structure of Triticum aestivum xylanase inhibitor-I (TAXI-I), a first member of potent TAXI-type inhibitors of fungal and bacterial family 11 xylanases, has been determined to 1.

View Article and Find Full Text PDF

The alkali extractable (AE) arabinoxylans from two rye flours differing in baking quality were studied following sequential extraction of water-unextractable and starch-free rye flour residue with saturated barium hydroxide solution, water and 1 M sodium hydroxide solution (Ba, BaH, and Na, respectively), and further fractionation of isolated fractions by ammonium sulfate precipitation. (1)H NMR and sugar analyses of AE subfractions provided evidence for the presence of lowly branched arabinoxylans (average arabinose-to-xylose ratio, Ara/Xyl approximately 0.5), containing mainly un- and monosubstituted xylopyranosyl residues (Xylp) in the chain.

View Article and Find Full Text PDF

Endo-beta-1,4-xylanases hydrolyze arabinoxylan, a major constituent of cereal cell walls, and are nowadays widely used in biotechnological processes. Purified complexes of family 11 xylanases from Aspergillus niger and Bacillus subtilis with TAXI I, a TAXI-type xylanase inhibitor from Triticum aestivum L., were prepared.

View Article and Find Full Text PDF

The nutrient content of food and animal feed may be improved through new knowledge about enzymatic changes in complex carbohydrates. Enzymatic hydrolysis of complex carbohydrates containing alpha or beta glycosidic bonds is very important in nutrition and in several technological processes. These enzymes are called glycosidases (Enzyme Class 3.

View Article and Find Full Text PDF

Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes.

View Article and Find Full Text PDF

Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors.

View Article and Find Full Text PDF

Cereals contain proteinaceous inhibitors of endoxylanases, which affect the efficiency and functionality of these enzymes in cereal processing. This review relates their first discovery in wheat and the subsequent purification of two distinct classes of endoxylanase inhibitors, namely Triticum aestivum xylanase inhibitor (TAXI)-type and xylanase inhibitor protein (XIP)-type inhibitors in cereals. Both inhibitor classes occur in monocots as multi-isoform families.

View Article and Find Full Text PDF

The influence on wheat flour gluten-starch separation of a xylanase from Aspergillus aculeatus (XAA) with hydrolysis selectivity toward water extractable arabinoxylan (WE-AX) and that is not inhibited by wheat flour xylanase inhibitors was compared to that of a xylanase from Bacillus subtilis (XBS) with hydrolysis selectivity toward water unextractable arabinoxylan (WU-AX) and that is inhibited by such inhibitors. XAA improved gluten agglomeration through degradation of WE-AX and concomitant reduction in viscosity, which in the laboratory scale batter procedure with a set of vibrating sieves (400, 250, and 125 microm), increased protein recoveries on the 400 microm sieve. In contrast, XBS had a negative effect as it decreased gluten protein recovery on this sieve, probably as a result of the viscosity increase that accompanied WU-AX solubilization.

View Article and Find Full Text PDF

The water extractable (WE) arabinoxylans from two rye flours differing in baking quality were studied following sequential extraction with water at 4, 40, and 100 degrees C. Ammonium sulfate fractionation of the resulting WE fractions and subsequent analysis revealed substantial differences in the structure of the isolated materials. Furthermore, it allowed us to identify the factors contributing to arabinoxylan water extractability.

View Article and Find Full Text PDF

Refrigerated doughs develop syruping upon prolonged storage. To assess the role of arabinoxylans (AX), in this phenomenon, the evolution of the AX population and syruping in refrigerated doughs during storage were studied. When doughs were kept at 6 degrees C for up to 34 days of storage, dough syruping increased from 0% (fresh dough) to 22% of dough weight, reaching a plateau after 16 days of storage.

View Article and Find Full Text PDF