Continuous X-ray imaging is known to reduce mechanical vibrations and scan time compared to a step-and-shoot acquisition approach. However, motion during X-ray exposure leads to blurred projections and consequently to loss of spatial resolution and contrast in conventionally reconstructed images. Recent works that aim to reduce continuous motion blur focus only on rotational motion and often include linearization approximations, while many applications would benefit from a more generalized continuous acquisition strategy.
View Article and Find Full Text PDFX-ray imaging is becoming more commonplace for inline industrial inspection, where a sample placed on a conveyor belt is translated through a scanning setup. However, the conventional X-ray attenuation contrast is often insufficient to characterize soft materials such as polymers and carbon reinforced components. Edge illumination (EI) is an X-ray phase contrast imaging technique that provides complementary differential phase and dark field contrasts, next to attenuation contrast.
View Article and Find Full Text PDFEdge illumination x-ray phase contrast imaging (XPCI) provides increased contrast for low absorbing materials compared to attenuation images and sheds light on the material microstructure through dark field contrast. To apply XPCI in areas such as non-destructive testing and inline inspection, where scanned samples are increasingly compared to simulated reference images, accurate and efficient simulation software is required. However, currently available simulators rely on expensive Monte Carlo techniques or wave-optics frameworks, resulting in long simulation times.
View Article and Find Full Text PDFEdge illumination is an emerging X-ray phase contrast imaging technique providing attenuation, phase and dark field contrast. Despite the successful transition from synchrotron to lab sources, the cone beam geometry of lab systems limits the effectiveness of using conventional planar gratings. The non-parallel incidence of X-rays introduces shadowing effects, worsening with increasing cone angle.
View Article and Find Full Text PDFTerahertz (THz) computed tomography is an emerging nondestructive and non-ionizing imaging method. Most THz reconstruction methods rely on the Radon transform, originating from x-ray imaging, in which x rays propagate in straight lines. However, a THz beam has a finite width, and ignoring its shape results in blurred reconstructed images.
View Article and Find Full Text PDFThe properties of fiber reinforced polymers are strongly related to the length and orientation of the fibers within the polymer matrix, the latter of which can be studied using X-ray computed tomography (XCT). Unfortunately, resolving individual fibers is challenging because they are small compared to the XCT voxel resolution and because of the low attenuation contrast between the fibers and the surrounding resin. To alleviate both problems, anisotropic dark field tomography via grating based interferometry (GBI) has been proposed.
View Article and Find Full Text PDFMonte-Carlo simulation studies have been essential for advancing various developments in single photon emission computed tomography (SPECT) imaging, such as system design and accurate image reconstruction. Among the simulation software available, Geant4 application for tomographic emission (GATE) is one of the most used simulation toolkits in nuclear medicine, which allows building systems and attenuation phantom geometries based on the combination of idealized volumes. However, these idealized volumes are inadequate for modeling free-form shape components of such geometries.
View Article and Find Full Text PDFThe design of new x-ray phase contrast imaging setups often relies on Monte Carlo simulations for prospective parameter studies. Monte Carlo simulations are known to be accurate but time consuming, leading to long simulation times, especially when many parameter variations are required. This is certainly the case for imaging methods relying on absorbing masks or gratings, with various tunable properties, such as pitch, aperture size, and thickness.
View Article and Find Full Text PDFThe 3D musculoskeletal motion of animals is of interest for various biological studies and can be derived from X-ray fluoroscopy acquisitions by means of image matching or manual landmark annotation and mapping. While the image matching method requires a robust similarity measure (intensity-based) or an expensive computation (tomographic reconstruction-based), the manual annotation method depends on the experience of operators. In this paper, we tackle these challenges by a strategic approach that consists of two building blocks: an automated 3D landmark extraction technique and a deep neural network for 2D landmarks detection.
View Article and Find Full Text PDFThis paper describes a reconstruction method for atom probe tomography based on a bottom-up approach accounting for (i) the final tip morphology (which is frequently induced by inhomogeneous evaporation probabilities across the tip surface due to laser absorption, heat diffusion effects, and inhomogeneous material properties), (ii) the limited (and changing) field of view, and (iii) the detector efficiency. The reconstruction starts from the final tip morphology and reverses the evaporation sequence through the pseudo-deposition of defined small reconstruction volumes, which are then stacked together to create the full three-dimensional (3D) tip. The subdivision in small reconstruction volumes allows the scheme to account for the changing tip shape and field of view as evaporation proceeds.
View Article and Find Full Text PDFCompared to single source systems, stereo X-ray CT systems allow acquiring projection data within a reduced amount of time, for an extended field-of-view, or for dual X-ray energies. To exploit the benefit of a dual X-ray system, its acquisition geometry needs to be calibrated. Unfortunately, in modular stereo X-ray CT setups, geometry misalignment occurs each time the setup is changed, which calls for an efficient calibration procedure.
View Article and Find Full Text PDFPurpose: Adjoint image warping is an important tool to solve image reconstruction problems that warp the unknown image in the forward model. This includes four-dimensional computed tomography (4D-CT) models in which images are compared against recorded projection images of various time frames using image warping as a model of the motion. The inversion of these models requires the adjoint of image warping, which up to now has been substituted by approximations.
View Article and Find Full Text PDFAn issue in computerized x-ray tomography is the limited size of available detectors relative to objects of interest. A solution was provided in the past two decades by positioning the detector in a lateral offset position, increasing the effective field of view (FOV) and thus the diameter of the reconstructed volume. However, this introduced artifacts in the obtained reconstructions, caused by projection truncation and data redundancy.
View Article and Find Full Text PDFLaboratory based X-ray micro-CT is a non-destructive testing method that enables three dimensional visualization and analysis of the internal and external morphology of samples. Although a wide variety of commercial scanners exist, most of them are limited in the number of degrees of freedom to position the source and detector with respect to the object to be scanned. Hence, they are less suited for industrial X-ray imaging settings that require advanced scanning modes, such as laminography, conveyor belt scanning, or time-resolved imaging (4DCT).
View Article and Find Full Text PDFWe present visual methods for the analysis and comparison of the results of curved fibre reconstruction algorithms, i.e., of algorithms extracting characteristics of curved fibres from X-ray computed tomography scans.
View Article and Find Full Text PDFThe overall importance of x-ray phase contrast (XPC) imaging has grown substantially in the last decades, in particular with the recent advent of compact lab-based XPC systems. For optimizing the experimental XPC setup, as well as benchmarking and testing new acquisition and reconstruction techniques, Monte Carlo (MC) simulations are a valuable tool. GATE, an open source application layer on top of the Geant4 simulation software, is a versatile MC tool primarily intended for various types of medical imaging simulations.
View Article and Find Full Text PDFIn agricultural robotics, a unique challenge exists in the automated planting of bulbous plants: the estimation of the bulb's growth direction. To date, no existing work addresses this challenge. Therefore, we propose the first robotic vision framework for the estimation of a plant bulb's growth direction.
View Article and Find Full Text PDFThe discrete algebraic reconstruction technique (DART) is a tomographic method to reconstruct images from X-ray projections in which prior knowledge on the number of object materials is exploited. In monochromatic X-ray CT (e.g.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
September 2018
SPECT imaging of the dopamine transporter (DAT) is used for diagnosis and monitoring progression of Parkinson's Disease (PD), and differentiation of PD from other neurological disorders. The diagnosis is based on the DAT binding in the caudate and putamen structures in the striatum. We previously proposed a relatively inexpensive method to improve the detection and quantification of these structures for dual-head SPECT by replacing one of the fan-beam collimators with a specially designed multi-pinhole (MPH) collimator.
View Article and Find Full Text PDFWe present a new approach to estimate geometry parameters of glass fibers in glass fiber-reinforced polymers from simulated X-ray micro-computed tomography scans. Traditionally, these parameters are estimated using a multi-step procedure including image reconstruction, pre-processing, segmentation and analysis of features of interest. Each step in this chain introduces errors that propagate through the pipeline and impair the accuracy of the estimated parameters.
View Article and Find Full Text PDF4D computed tomography (4D-CT) aims to visualise the temporal dynamics of a 3D sample with a sufficiently high temporal and spatial resolution. Successive time frames are typically obtained by sequential scanning, followed by independent reconstruction of each 3D dataset. Such an approach requires a large number of projections for each scan to obtain images with sufficient quality (in terms of artefacts and SNR).
View Article and Find Full Text PDFIn computed tomography (CT), motion and deformation during the acquisition lead to streak artefacts and blurring in the reconstructed images. To remedy these artefacts, we introduce an efficient algorithm to estimate and correct for global affine deformations directly on the cone beam projections. The proposed technique is data driven and thus removes the need for markers and/or a tracking system.
View Article and Find Full Text PDFPurpose: Cerebral perfusion x-ray computed tomography (PCT) is a powerful tool for noninvasive imaging of hemodynamic information throughout the brain. Conventional PCT requires the brain to be imaged multiple times during the perfusion process, and hence radiation dose is a major concern. The authors propose a PCT reconstruction algorithm that allows for lowering the dose while maintaining a high quality of the perfusion maps.
View Article and Find Full Text PDFObject reconstruction from a series of projection images, such as in computed tomography (CT), is a popular tool in many different application fields. Existing commercial software typically provides sufficiently accurate and convenient-to-use reconstruction tools to the end-user. However, in applications where a non-standard acquisition protocol is used, or where advanced reconstruction methods are required, the standard software tools often are incapable of computing accurate reconstruction images.
View Article and Find Full Text PDF