Introduction: Early and reliable determination of bacterial strain specificity and antibiotic resistance is critical to improve sepsis treatment. Previous research demonstrated the potential of headspace analysis of volatile organic compounds (VOCs) to differentiate between various microorganisms associated with pulmonary infections in vitro. This study evaluates whether VOC analysis can also discriminate antibiotic sensitive from resistant bacterial strains when cultured on varying growth media.
View Article and Find Full Text PDFIntroduction: Early detection of colorectal cancer (CRC) by screening programs is crucial because survival rates worsen at advanced stages. However, the currently used screening method, the fecal immunochemical test (FIT), suffers from a high number of false-positives and is insensitive for detecting advanced adenomas (AAs), resulting in false-negatives for these premalignant lesions. Therefore, more accurate, noninvasive screening tools are needed.
View Article and Find Full Text PDFIn patients with cystic fibrosis (CF), pulmonary exacerbations (PEx) have an important influence on well-being, quality of life, and lung function decline. Early detection combined with early treatment may prevent severe PEx. To determine whether early detection of PEx is possible by non-invasive markers (volatile organic compounds) in exhaled breath.
View Article and Find Full Text PDFExhaled breath analysis has become a promising monitoring tool for various ailments by identifying volatile organic compounds (VOCs) as indicative biomarkers excreted in the human body. Throughout the process of sampling, measuring, and data processing, non-biological variations are introduced in the data leading to batch effects. Algorithmic approaches have been developed to cope with within-study batch effects.
View Article and Find Full Text PDFAnalysis of exhaled breath for asthma phenotyping using endogenously generated volatile organic compounds (VOCs) offers the possibility of noninvasive diagnosis and therapeutic monitoring. Induced sputum is indeed not widely available and markers of neutrophilic asthma are still lacking. To determine whether analysis of exhaled breath using endogenously generated VOCs can be a surrogate marker for recognition of sputum inflammatory phenotypes.
View Article and Find Full Text PDFMicrobiota composition and its metabolic capacity are very important for host health. Evidence suggests that gut microbiome is involved in the metabolites production by host-microbiome interaction. These metabolites can be absorbed in blood and excreted in exhaled air.
View Article and Find Full Text PDFUnlabelled: As in other disciplines of 'omics' research, reproducibility is a major problem in exhaled breath research. Many studies report discriminatory volatiles in the same disease, yet the similarity between lists of identified compounds is low. This can occur due to many factors including the lack of internal and, in particular, external validation.
View Article and Find Full Text PDFBackground: Asthma control does not yet meet the goals of asthma management guidelines. Non-invasive monitoring of airway inflammation may help to improve the level of asthma control in children.
Objectives: (1) To identify a set of exhaled volatile organic compounds (VOCs) that is most predictive for an asthma exacerbation in children.
Inflammation associated oxidative stress leads to peroxidation of polyunsaturated fatty acids thereby generating volatile organic compounds (VOCs). The integrative analysis of the total amount of VOCs released by eosinophils and neutrophils in vitro enables the search for those compounds that discriminates between various inflammatory conditions. The approach comprises isolating eosinophils and neutrophils from 30 ml of blood of healthy non-smoking volunteers by gradient centrifugation, using lymphoprep.
View Article and Find Full Text PDFEarly diagnosis of liver cirrhosis may prevent progression and development of complications. Liver biopsy is the current standard, but is invasive and associated with morbidity. We aimed to identify exhaled volatiles within a heterogeneous group of chronic liver disease (CLD) patients that discriminates those with compensated cirrhosis (CIR) from those without cirrhosis, and compare this with serological markers.
View Article and Find Full Text PDFVentilator-associated pneumonia (VAP) is a nosocomial infection occurring in the intensive care unit (ICU). The diagnostic standard is based on clinical criteria and bronchoalveolar lavage (BAL). Exhaled breath analysis is a promising non-invasive method for rapid diagnosis of diseases and contains volatile organic compounds (VOCs) that can differentiate diseased from healthy individuals.
View Article and Find Full Text PDFBackground: Disappearance of macroscopic mucosal inflammation predicts long-term outcome in Crohn's disease (CD). It can be assessed by ileocolonoscopy, which is, however, an invasive and expensive procedure. Disease activity indices do not correlate well with endoscopic activity and noninvasive markers have a low sensitivity in subgroups of patients.
View Article and Find Full Text PDFRationale: A reliable asthma diagnosis is difficult in wheezing preschool children.
Objectives: To assess whether exhaled biomarkers, expression of inflammation genes, and early lung function measurements can improve a reliable asthma prediction in preschool wheezing children.
Methods: Two hundred two preschool recurrent wheezers (aged 2-4 yr) were prospectively followed up until 6 years of age.
Background: Several classifications of adult asthma patients using cluster analyses based on clinical and demographic information has resulted in clinical phenotypic clusters that do not address molecular mechanisms. Volatile organic compounds (VOC) in exhaled air are released during inflammation in response to oxidative stress as a result of activated leukocytes. VOC profiles in exhaled air could distinguish between asthma patients and healthy subjects.
View Article and Find Full Text PDFAnalysis of exhaled breath samples reveals the presence of many volatile organic compounds (VOCs). The VOC composition of the breath, the so-called breath profile, contains a variety of information including the health status and condition of the organism that produced the sample. Therefore, breath profiling can be used in diagnosing and monitoring disease and other characteristics of the organism, such as phenotype, diet, and exercise.
View Article and Find Full Text PDFWheezing is one of the most common respiratory symptoms in preschool children under six years old. Currently, no tests are available that predict at early stage who will develop asthma and who will be a transient wheezer. Diagnostic tests of asthma are reliable in adults but the same tests are difficult to use in children, because they are invasive and require active cooperation of the patient.
View Article and Find Full Text PDFIn the present longitudinal study, we followed volatile organic compounds (VOCs) excreted in exhaled breath of 20 healthy individuals over time, while adhering to a gluten-free diet for 4 weeks prior to adherence to a normal diet. We used gas chromatography coupled with mass spectrometry (TD-GC-tof-MS) in combination with chemometric analysis to detect an array of VOCs in exhaled breath. Multivariate analysis was applied to extract the maximal information from the obtained data.
View Article and Find Full Text PDFThe hypothesis was that prediction of asthma exacerbations in children is possible by profiles of exhaled volatile organic compounds (VOCs), a noninvasive measure of airway inflammation. The aims of the present study were to determine: 1) whether VOCs in exhaled breath are able to predict asthma exacerbations; and 2) the time course and chemical background of the most predictive VOCs. A prospective study was performed in 40 children with asthma over 1 year.
View Article and Find Full Text PDFAlthough wheeze is common in preschool children, the underlying pathophysiology has not yet been disentangled. Volatile organic compounds (VOCs) in exhaled breath may serve as noninvasive markers of early wheeze. We aimed to assess the feasibility of VOC collection in preschool children, and to study whether a VOC profile can differentiate between children with and without recurrent wheeze.
View Article and Find Full Text PDFBackground & Aims: Histological evaluation of a liver biopsy is the current gold standard to diagnose non-alcoholic steatohepatitis (NASH), but the procedure to obtain biopsies is associated with morbidity and high costs. Hence, only subjects at high risk are biopsied, leading to underestimation of NASH prevalence, and undertreatment. Since analysis of volatile organic compounds in breath has been shown to accurately identify subjects with other chronic inflammatory diseases, we investigated its potential as a non-invasive tool to diagnose NASH.
View Article and Find Full Text PDFExhaled breath contains thousands of volatile organic compounds (VOCs) of which the composition varies depending on health status. Various metabolic processes within the body produce volatile products that are released into the blood and will be passed on to the airway once the blood reaches the lungs. Moreover, the occurrence of chronic inflammation and/or oxidative stress can result in the excretion of volatile compounds that generate unique VOC patterns.
View Article and Find Full Text PDFIn cystic fibrosis (CF), airway inflammation causes an increased production of reactive oxygen species, responsible for degradation of cell membranes. During this process, volatile organic compounds (VOCs) are formed. Measurement of VOCs in exhaled breath of CF patients may be useful for the assessment of airway inflammation.
View Article and Find Full Text PDFMetabolites of the human carcinogen 4-aminobiphenyl (4-ABP) form hemoglobin (Hb) adducts, which represent a useful biomarker for exposure. However, not every individual responds to a similar degree to 4-ABP exposure, and variations in 4-ABP-Hb adduct formation might be explained by genetic polymorphisms in genes coding for enzymes involved in 4-ABP metabolism. 4-ABP-Hb adducts were measured in blood samples from 57 smoking and 10 non-smoking volunteers.
View Article and Find Full Text PDFIn order to study neutrophil-mediated formation of carcinogenic N-nitroso compounds as a mechanism of inflammation-related colon carcinogenesis, we designed an in vitro model for intestinal inflammation, consisting of a coincubation system with human colon cells (Caco-2 cells) and activated human neutrophils (PMN), as important immunoreactive cells. We investigated whether nitrosamines and nitrosamides could be formed upon addition of dimethylamine, morpholine and methylurea to the coincubations as nitrosatable precursors, which are known to produce carcinogenic N-nitroso compounds. Incubations of pure nitric oxide with dimethylamine and morpholine showed that NO-mediated formation of nitrosodimethylamine and nitrosomorpholine is possible under the incubation conditions.
View Article and Find Full Text PDF