Publications by authors named "Jan Christiansen"

Article Synopsis
  • Understanding the mRNA life cycle involves studying the dynamics and composition of mRNPs (messenger ribonucleoproteins), and techniques like fluorescence correlation spectroscopy (FCS) and cross-correlation spectroscopy (FCCS) are effective tools for this purpose.
  • FCS can analyze mRNPs in cell lysates, which mimic live cell conditions and allow for detailed studies of mRNP interactions and responses to treatments.
  • FCCS can confirm known RNA interactions and measure the overlap of molecules within mRNPs, enhancing our understanding of their complexity and providing new ways to quantitatively analyze these structures.
View Article and Find Full Text PDF

Cytoplasmic messenger ribonucleoprotein particles (mRNPs) represent the cellular transcriptome, and recent data have challenged our current understanding of their architecture, transport, and complexity before translation. Pre-translational mRNPs are composed of a single transcript, whereas P-bodies and stress granules are condensates. Both pre-translational mRNPs and actively translating mRNPs seem to adopt a linear rather than a closed-loop configuration.

View Article and Find Full Text PDF

Small cytoplasmic mRNP granules are implicated in mRNA transport, translational control, and decay. Using super-resolution microscopy and fluorescence correlation spectroscopy, we analyzed the molecular composition and dynamics of single cytoplasmic YBX1_IMP1 mRNP granules in live cells. Granules appeared elongated and branched, with patches of IMP1 and YBX1 distributed along mRNA, reflecting the attachment of the two RNA-binding proteins in cis.

View Article and Find Full Text PDF

The Na-HCO cotransporter NBCn1 (SLC4A7) is up-regulated in breast cancer, important for tumor growth, and a single nucleotide polymorphism (SNP), rs4973768, in its 3' untranslated region (3'UTR) correlates with increased breast cancer risk. We previously demonstrated that NBCn1 expression and promoter activity are strongly increased in breast cancer cells expressing a constitutively active oncogenic human epidermal growth factor receptor 2 (HER2) (p95HER2). Here, we address the roles of p95HER2 in regulating NBCn1 expression via post-transcriptional mechanisms.

View Article and Find Full Text PDF

Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA-binding proteins containing low-complexity sequences are prone to generate liquid droplets via liquid-liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA-binding protein Imp, which exhibits a C-terminal low-complexity sequence, increases the formation of F-actin by binding to 3' untranslated regions of mRNAs encoding components participating in F-actin biogenesis.

View Article and Find Full Text PDF

Background: Post-transcriptional RNA regulons ensure coordinated expression of monocistronic mRNAs encoding functionally related proteins. In this study, we employ a combination of RIP-seq and short- and long-wave individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) technologies in Drosophila cells to identify transcripts associated with cytoplasmic ribonucleoproteins (RNPs) containing the RNA-binding protein Imp.

Results: We find extensive binding of Imp to 3' UTRs of transcripts that are involved in F-actin formation.

View Article and Find Full Text PDF

The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA.

View Article and Find Full Text PDF

Lack of IGF2 in mice results in diminished embryonic growth due to diminished cell proliferation. Here we show that mouse embryonic fibroblasts lacking the RNA-binding protein IMP1 (IGF2 mRNA-binding protein 1) have defective splicing and translation of IGF2 mRNAs, markedly reduced IGF2 polypeptide production, and diminished proliferation. The proliferation of the IMP1-null fibroblasts can be restored to wild-type levels by IGF2 in vitro or by re-expression of IMP1, which corrects the defects in IGF2 RNA splicing and translation.

View Article and Find Full Text PDF

The post-transcriptional operon provides a means of synexpression of mRNAs encoding interrelated proteins. The coordination of gene expression may be achieved by a trans-acting RNA-binding protein attaching to similar cis-elements in different, yet functionally clustered, mRNAs. The RNP granule can be regarded as a supramolecular assembly of RNA and protein, probably representing several overlapping post-transcriptional operons.

View Article and Find Full Text PDF

A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon model (PTO) is used to describe data from an assortment of methods (e.g.

View Article and Find Full Text PDF

Recent genome-wide association (GWA) studies of type 2 diabetes (T2D) have implicated IGF2 mRNA-binding protein 2 (IMP2/IGF2BP2) as one of the several factors in the etiology of late onset diabetes. IMP2 belongs to a family of oncofetal mRNA-binding proteins implicated in RNA localization, stability, and translation that are essential for normal embryonic growth and development. This review provides a background to the IMP protein family with an emphasis on human IMP2, followed by a closer look at the GWA studies to evaluate the significance, if any, of the proposed correlation between IMP2 and T2D.

View Article and Find Full Text PDF

Clusters of regularly interspaced short palindromic repeats (CRISPRs) of Sulfolobus fall into three main families based on their repeats, leader regions, associated cas genes and putative recognition sequences on viruses and plasmids. Spacer sequence matches to different viruses and plasmids of the Sulfolobales revealed some bias particularly for family III CRISPRs. Transcription occurs on both strands of the five repeat-clusters of Sulfolobus acidocaldarius and a repeat-cluster of the conjugative plasmid pKEF9.

View Article and Find Full Text PDF

Drosophila IMP (dIMP) is related to the vertebrate RNA-binding proteins IMP1-3, ZBP1, Vg1RBP and CRD-BP, which are involved in RNA regulatory processes such as translational repression, localization and stabilization. The proteins are expressed in many fetal tissues, including the developing nervous system, and IMP up-regulation in solid tumors correlates with a high metastatic potential and poor prognosis. In this study, we used immunohistochemistry and live-imaging of an endogenous promoter-driven GFP-dIMP fusion protein to reveal the expression pattern of dIMP protein throughout embryogenesis.

View Article and Find Full Text PDF

Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization, and in motile cells IMP-containing granules are dispersed around the nucleus and in cellular protrusions. We isolated the IMP1-containing RNP granules and found that they represent a unique RNP entity distinct from neuronal hStaufen and/or fragile X mental retardation protein granules, processing bodies, and stress granules.

View Article and Find Full Text PDF

Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins.

View Article and Find Full Text PDF

Insulin-like growth factor-II mRNA-binding proteins 1, 2 and 3 (IMP1, IMP2 and IMP3) belong to a family of RNA-binding proteins implicated in mRNA localization, turnover and translational control. We examined their expression pattern during development of murine and human testis and ovaries. In the mouse, IMPs were expressed in male and female gonadal cells at embryonic day 12.

View Article and Find Full Text PDF

Active cytoplasmic RNA localization depends on the attachment of RNA-binding proteins that dictate the destination of the RNA molecule. In this study, we used an electrophoretic mobility-shift assay in combination with equilibrium and kinetic analyses to characterize the assembly of the human zipcode-binding protein IMP1 on targets in the 3'-UTR from Igf-II mRNA and in H19 RNA. In both cases, two molecules of IMP1 bound to RNA by a sequential, cooperative mechanism, characterized by an initial fast step, followed by a slow second step.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.

View Article and Find Full Text PDF

Background: The pathologic modifications characterizing vein graft disease resemble those observed in native arteriosclerosis, but in accelerated form. Although both disorders are considered to be inflammatory diseases, it remains to be determined whether diseased vein grafts and atherosclerotic coronary arteries differentially express inflammatory mediators. Therefore, we examined whether differences in the expression of proinflammatory cytokines by these two distinct vascular pathologies favor the accelerated inflammation within diseased vein grafts.

View Article and Find Full Text PDF

The human IMPs (insulin-like growth factor II mRNA-binding proteins) belong to a vertebrate zipcode-binding protein family consisting of two RNA recognition motifs and four K homology domains and have been implicated in cytoplasmic mRNA localization, turnover and translational control. In the present study, we show that IMP1 is capable of translocating into nuclei of NIH 3T3 fibroblasts and its immunoreactivity is present in the nuclei of human spermatogenic cells. IMP1 does not contain a simple import signal, but nuclear entry was facilitated by disruption of RNA binding and cytoplasmic granule formation.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most frequent complication after cardiac surgery and can cause considerable morbidity. Low-energy cardioversion (LEC) using biatrial epicardial wires implanted during surgery has been shown to be effective and safe in conscious patients, but has not been directly compared with medical treatment so far. We therefore prospectively studied the efficacy of LEC in men 60 years of age and older.

View Article and Find Full Text PDF

The IGF-II mRNA-binding proteins (IMPs), which are composed of two RNA recognition motifs, (RRM) and four hnRNP K homology (KH) domains, have been implicated in subcytoplasmic localization of mRNAs during embryogenesis. The IMP family originated via two gene duplications before the divergence of vertebrates, and IMP homologues consisting of only the four KH motifs have been identified in Drosophila and Caenorhabditis elegans. Here we characterise the trafficking of GFP-IMP1 fusion proteins and determine the structural determinants for proper cytoplasmic localization.

View Article and Find Full Text PDF

Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear.

View Article and Find Full Text PDF