We investigated the production of highly reactive oxygen species (ROS) in solutions undergoing treatment using CaviPlasma (CP) technology. This technology combines plasma discharge with hydrodynamic cavitation. This study focused on factors such as pH, conductivity, presence of salts and organic matter affecting ROS formation and their stability in solutions.
View Article and Find Full Text PDFPolyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C.
View Article and Find Full Text PDFPolymeric surfaces can benefit from functional modifications prior to using them for biological and/or technical applications. Surfaces considered for biocompatibility studies can be modified to gain beneficiary hydrophilic properties. For such modifications, the preparation of highly hydrophilic surfaces by means of plasma polymerization can be a good alternative to classical wet chemistry or plasma activation in simple atomic or molecular gasses.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2010
In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm.
View Article and Find Full Text PDF