Objective: Subtle motion of an epileptic patient examined with co-registered EEG and functional MRI (EEG-fMRI) may often lead to spurious fMRI activation patterns when true epileptic spikes are contaminated with motion artefacts. In recent years, methods relying on reference signals for correcting these subtle movements in the EEG have emerged. In this study, the performance of two reference-based devices are compared to the template-based method with regard to their ability to remove movement-related artifacts in EEG measured during scanning.
View Article and Find Full Text PDFControversy remains regarding the preferred modality, magnetoencephalography (MEG) or EEG, for the presurgical evaluation of patients with epilepsy. In general, it appears that the spike yields for MEG and EEG are similar in patients with temporal lobe epilepsy, and that for neocortical epilepsy the MEG spike yields may be larger than for EEG. In general, MEG/EEG spike yields depend on factors such as (1) the number of sensors, (2) the source depth and orientation, (3) the background activity, and (4) the smearing of the potential fields due to variations in skull resistivity in EEG.
View Article and Find Full Text PDFThe standard procedure to determine the brain response from a multitrial evoked magnetoencephalography (MEG) or electroencephalography (EEG) data set is to average the individual trials of these data, time locked to the stimulus onset. When the brain responses vary from trial-to-trial this approach is false. In this paper, a maximum-likelihood estimator is derived for the case that the recorded data contain amplitude variations.
View Article and Find Full Text PDF