We propose a novel spatially inhomogeneous setup for revealing quench-induced fractionalized excitations in entanglement dynamics. In this quench-probe setting, the region undergoing a quantum quench is tunnel coupled to a static region, the probe. Subsequently, the time-dependent entanglement signatures of a tunable subset of excitations propagating to the probe are monitored by energy selectivity.
View Article and Find Full Text PDFPhys Rev Lett
September 2021
We report on the dynamical formation of exceptional degeneracies in basic correlation functions of nonintegrable one- and two-dimensional systems quenched to the vicinity of a critical point. Remarkably, fine-tuned semimetallic points in the phase diagram of the considered systems are thereby promoted to topologically robust non-Hermitian (NH) nodal phases emerging in the coherent time evolution of a dynamically equilibrating system. Using nonequilibrium Green's function methods within the conserving second Born approximation, we predict observable signatures of these NH nodal phases both in equilibrated spectral functions and in the nonequilibrium dynamics of momentum distribution functions.
View Article and Find Full Text PDFWe experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures. Implementing nonunitary time evolution in reciprocal space followed by interferometric measurements, we probe the complex eigenenergies of the corresponding NH Bloch Hamiltonians, and study in detail the topology of their exceptional lines (ELs), the NH counterpart of nodal lines in Hermitian systems. We focus on two distinct types of NH metals: two-dimensional systems with symmetry-protected ELs, and three-dimensional systems possessing symmetry-independent topological ELs in the form of knots.
View Article and Find Full Text PDFWe introduce and study a novel class of sensors whose sensitivity grows exponentially with the size of the device. Remarkably, this drastic enhancement does not rely on any fine-tuning, but is found to be a stable phenomenon immune to local perturbations. Specifically, the physical mechanism behind this striking phenomenon is intimately connected to the anomalous sensitivity to boundary conditions observed in non-Hermitian topological systems.
View Article and Find Full Text PDFQuantum processes of inherent dynamical nature, such as quantum walks, defy a description in terms of an equilibrium statistical physics ensemble. Until now, identifying the general principles behind the underlying unitary quantum dynamics has remained a key challenge. Here, we show and experimentally observe that split-step quantum walks admit a characterization in terms of a dynamical topological order parameter (DTOP).
View Article and Find Full Text PDFPhys Rev Lett
February 2019
We study the effect of long-ranged interactions on Weyl semimetals. Such interactions can give rise to unpaired Weyl nodes, which we demonstrate by explicitly constructing a system with just a single node-a situation that is fundamentally forbidden by fermion doubling in noninteracting band structures. Adding a magnetic field, we investigate the fate of the chiral anomaly.
View Article and Find Full Text PDFNon-Hermitian systems exhibit striking exceptions from the paradigmatic bulk-boundary correspondence, including the failure of bulk Bloch band invariants in predicting boundary states and the (dis)appearance of boundary states at parameter values far from those corresponding to gap closings in periodic systems without boundaries. Here, we provide a comprehensive framework to unravel this disparity based on the notion of biorthogonal quantum mechanics: While the properties of the left and right eigenstates corresponding to boundary modes are individually decoupled from the bulk physics in non-Hermitian systems, their combined biorthogonal density penetrates the bulk precisely when phase transitions occur. This leads to generalized bulk-boundary correspondence and a quantized biorthogonal polarization that is formulated directly in systems with open boundaries.
View Article and Find Full Text PDFWe show how dispersionless channels exhibiting perfect spin-momentum locking can arise in a 1D lattice model. While such spectra are forbidden by fermion doubling in static 1D systems, here we demonstrate their appearance in the stroboscopic dynamics of a periodically driven system. Remarkably, this phenomenon does not rely on any adiabatic assumptions, in contrast to the well known Thouless pump and related models of adiabatic spin pumps.
View Article and Find Full Text PDFPhys Rev Lett
September 2016
We consider a two-dimensional system initialized in a topologically trivial state before its Hamiltonian is ramped through a phase transition into a Chern insulator regime. This scenario is motivated by current experiments with ultracold atomic gases aimed at realizing time-dependent dynamics in topological insulators. Our main findings are twofold.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2015
We theoretically investigate Josephson junctions with a phase shift of π in various proximity induced one-dimensional superconductor models. One of the salient experimental signatures of topological superconductors, namely the fractionalized 4π periodic Josephson effect, is closely related to the occurrence of a characteristic zero energy bound state in such junctions. We make a detailed analysis of a more general type of π-junctions coined 'phase winding junctions' where the phase of the order parameter rotates by an angle π while its absolute value is kept finite.
View Article and Find Full Text PDFWe investigate a bilayer system of critical HgTe quantum wells, each featuring a spin-degenerate pair of massless Dirac fermions. In the presence of an electrostatic interlayer Coulomb coupling, we determine the exciton condensate order parameter of the system self-consistently. Calculating the bulk topological Z2 invariant of the resulting mean-field Hamiltonian, we discover a novel time reversal symmetric topological exciton condensate state, coined the helical topological exciton condensate.
View Article and Find Full Text PDFWe study theoretically the proximity effect of a one-dimensional metallic quantum wire (in the absence of spin-orbit interaction) lying on top of an unconventional superconductor. Three different material classes are considered as a substrate: (i) a chiral superconductor in class D with broken time-reversal symmetry and a class DIII superconductor (ii) with and (iii) without a nontrivial Z(2) number. Interestingly, we find degenerate zero energy Majorana bound states at both ends of the wire for all three cases.
View Article and Find Full Text PDFWe analyze the screening of a magnetic quantum dot with spin 1/2 coupled to two helical liquids. Interestingly, we find two qualitatively different sets of Toulouse points, i.e.
View Article and Find Full Text PDFPurpose: Magnetic resonance imaging systems usually feature linear and shift-invariant (stationary) transform characteristics. The point spread function or equivalently the modulation transfer function may thus be used for an objective quality assessment of imaging modalities. The recently introduced theory of compressed sensing, however, incorporates nonlinear and nonstationary reconstruction algorithms into the magnetic resonance imaging process which prohibits the usage of the classical point spread function and therefore the according evaluation.
View Article and Find Full Text PDFA single pair of helical edge states as realized at the boundary of a quantum spin Hall insulator is known to be robust against elastic single particle backscattering as long as time reversal symmetry is preserved. However, there is no symmetry preventing inelastic backscattering as brought about by phonons in the presence of Rashba spin orbit coupling. In this Letter, we show that the quantized conductivity of a single channel of helical Dirac electrons is protected even against this inelastic mechanism to leading order.
View Article and Find Full Text PDF