Immunotherapy is currently investigated as treatment option in many types of cancer. So far, results from clinical trials have demonstrated that significant benefit from immunomodulatory therapies is restricted to patients with select histologies. To broaden the potential use of these therapies, a deeper understanding for mechanisms of immunosuppression in patients with cancer is needed.
View Article and Find Full Text PDFBackground: Adoptive T cell transfer (ACT) is currently under investigation for the treatment of metastatic cancer. Recent evidence suggests that the coinhibitory PD-1-PD-L1 axis plays a major role in ACT failure. We hypothesized that a new fusion receptor reverting PD-1-mediated inhibition into CD28 costimulation may break peripheral tolerance.
View Article and Find Full Text PDFBackground: One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy.
Methods: SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein.
Tumors frequently induce immature myeloid cells (iMC), which suppress specific and unrelated cytotoxic T lymphocyte (CTL) responses and are termed myeloid-derived suppressor cells (MDSC). Mainly analyzed by in vitro assays in tumor transplantation models, little is known about their function in autochthonous tumor models in vivo. We analyzed iMC in 3 SV40 large T (Tag)-driven conditional autochthonous cancer models with different immune status: (1) Early Tag-specific CTL competence and rare stochastic Tag activation leading to sporadic cancer, which induces an aberrant immune response and CTL tolerance; (2) Cre/LoxP recombinase-mediated hepatocellular carcinoma (HCC) development in neonatal Tag-tolerant mice; and (3) Tag-activation through Cre recombinase-encoding viruses in the liver and HCC development with systemic anti-Tag CTL immunity.
View Article and Find Full Text PDFThe identification of antigens associated with tumor destruction is a major goal of cancer immunology. Vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor generates potent, specific, and long-lasting antitumor immunity through improved tumor antigen presentation by dendritic cells and macrophages. A phase I clinical trial of this immunization strategy in patients with disseminated melanoma revealed the consistent induction in distant metastases of dense T and B cell infiltrates that effectuated substantial tumor necrosis and fibrosis.
View Article and Find Full Text PDFAn important goal of cancer immunology is the identification of antigens associated with tumor destruction. Vaccination with irradiated tumor cells engineered to secrete granulocyte/macrophage colony-stimulating factor (GM-CSF) generates potent, specific, and long-lasting antitumor immunity in multiple murine tumor models. A phase I clinical trial of this vaccination strategy in patients with advanced melanoma demonstrated the consistent induction of dense CD4(+) and CD8(+) T lymphocyte and plasma cell infiltrates in distant metastases, resulting in extensive tumor destruction, fibrosis, and edema.
View Article and Find Full Text PDF