Earth harbours an extraordinary plant phenotypic diversity that is at risk from ongoing global changes. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change-shape the trait covariation that underlies plant phenotypic diversity. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands.
View Article and Find Full Text PDFPerennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown.
View Article and Find Full Text PDFGrazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide.
View Article and Find Full Text PDFProjected global change will increase the level of land-use and environmental stressors such as drought and grazing, particularly in drylands. Still, combined effects of drought and grazing on plant production are poorly understood, thus hampering adequate projections and development of mitigation strategies. We used a large, cross-continental database consisting of 174 long-term datasets from >30 dryland regions to quantify ecosystem responses to drought and grazing with the ultimate goal to increase functional understanding in these responses.
View Article and Find Full Text PDFDespite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs).
View Article and Find Full Text PDF