Publications by authors named "Jan C M Van Hest"

In this paper, the introduction of both a methionine residue and a nitrobenzyl derivative as a labile linker between the peptide part and the hydrophobic alkyl chain of a peptide amphiphile are presented. These modifications are shown not to inhibit the formation of structured assemblies that analogous peptide amphiphiles lacking the linkers are able to form. Moreover, the introduction of either labile linker allows removal of the peptide amphiphile's stabilizing hydrophobic moieties to initiate a controlled disassembly of fibre aggregates.

View Article and Find Full Text PDF

Polystyrene-polyisocyanopeptide (PS-PIAT) polymersomes containing CALB in two different locations, one in the aqueous inner compartment and one in the bilayer, were investigated for enzymatic ring-opening polymerization of lactones in water. It is shown that the monomers 8-octanolactone and dodecalactone yield oligomers with this polymersome system. It is also observed that the polymerization activity is dependent on the position of the enzyme in the polymersome.

View Article and Find Full Text PDF

Amyloid-like model peptides, modified on the N-terminus with an alkyl tail and on the C-terminus with a PEG chain, yielded fibres that were susceptible to triggered disassembly by removal of the alkyl chain, which affected the hydrophobic-hydrophilic balance.

View Article and Find Full Text PDF

Polymersomes, composed of amphiphilic polystyrene-block-poly(acrylic acid) (PS-b-PAA), with the periphery being covered with azide groups, were used for further functionalization using "click" chemistry.

View Article and Find Full Text PDF

Hydrophobic interactions play an important role in assembly processes in aqueous environments. In case of peptide amphiphiles, hydrophobicity is combined with hydrogen bonding to yield well-defined peptide-based aggregates. Here, we report a systematic study after the role of hydrophobic interactions on both stabilization and morphology of a peptide fibrillar assembly.

View Article and Find Full Text PDF

In this paper, a straightforward and generic protocol is presented to label the C-terminus of a peptide with any desired moiety that is functionalized with a primary amine. Amine-functional molecules included are polymers (useful for hybrid polymers), long alkyl chains (used in peptide amphiphiles and stabilization of peptides), propargyl amine and azido propyl-amine (desirable for 'click' chemistry), dansyl amine (fluorescent labeling of peptides) and crown ethers (peptide switches/hybrids). In the first part of the procedure, the primary amine is attached to an aldehyde-functional resin via reductive amination.

View Article and Find Full Text PDF

The unsaturated amino acid 2-amino-3-methyl-4-pentenoic acid (E-Ile) was prepared in the form of its (2S,3S),(2R,3R) and (2S,3R),(2R,3S) stereoisomeric pairs. The translational activities of SS-E-Ile and SR-E-Ile were assessed in an E. coli strain rendered auxotrophic for isoleucine.

View Article and Find Full Text PDF

Biohybrid amphiphiles have been prepared from terminal azide functionalised polystyrene and an alkyne functionalised peptide or protein via a Cu(I) catalysed Huisgen [3 + 2] dipolar cycloaddition reaction.

View Article and Find Full Text PDF

Silks are a widely studied class of naturally occurring structural proteins. Dragline spider silk, in particular, is considered to be nature's high-performance material due to its remarkable combination of strength and toughness. These mechanical properties stem from the protein secondary structure, a combination of well-defined beta-sheets in a less well-defined glycine-rich matrix.

View Article and Find Full Text PDF

A new versatile route to synthesise biohybrid block copolymers is presented in which an amine terminated polymer is attached to an aldehyde functionalised resin, from which in subsequent steps the desired peptide can be grown using standard procedures.

View Article and Find Full Text PDF

Self-assembly is one of nature's mechanisms by which higher order structures are obtained. Two of the main driving forces for self-assembly, hydrophobic interactions and hydrogen bonding, are both present within amphiphilic peptides. Here, it is demonstrated how the intricately interconnected folding and assembly behavior of an N-terminally acylated peptide, with the sequence GANPNAAG, has been tuned by varying its hydrophobic tail and thermal history.

View Article and Find Full Text PDF

Polymeric building blocks containing terminal azide and alkyne functionalities are prepared via atom transfer radical polymerization (ATRP) and used to modularly synthesize block copolymers via 1,3-dipolar cycloaddition reactions, which are quantitative according to SEC measurements.

View Article and Find Full Text PDF

An oligopeptide modified on both the N- and C-termini with hydrophobic moieties was prepared on a solid phase and anchored into a liposome, stabilizing the fold of the peptide into a beta-hairpin, which would otherwise be a random coil.

View Article and Find Full Text PDF