Publications by authors named "Jan C Habel"

Living in a warming world requires adaptations to altered annual temperature regimes. In Europe, spring is starting earlier, and the vegetation period is ending later in the year. These climatic changes are leading not only to shifts in distribution ranges of flora and fauna, but also to phenological shifts.

View Article and Find Full Text PDF

Temperature increases and land-use changes induce altered annual activity periods of arthropods. However, sufficiently resolved long-term data sets (> 100 years) are mostly missing. We use a data set of longhorn beetle records (71 species) collected in Luxembourg 1864-2014.

View Article and Find Full Text PDF

Climate change has a worldwide impact on biodiversity and ecosystem functions, in particular by causing shifts in species distributions and changes in species communities. Here, we analyse altitudinal range shifts of 30,604 lowland butterfly and burnet moth records from 119 species over the past seven decades across the federal state of Salzburg (northern Austria) spanning an altitudinal gradient of >2500 m. For each species, we compiled species-specific traits on their ecology, behaviour, and life-cycle.

View Article and Find Full Text PDF

Habitat destruction and deterioration of habitat quality caused a severe decline of biodiversity, such as insect diversity. In this study, we analyze insect diversity and biomass across agro-environments. We collected flying insects with 20 malaise traps across a landscape mosaic consisting of organic (eight traps) and conventional (four traps) farmland, as well as across agricultural land that has been recently converted from conventional to organic farming (eight traps).

View Article and Find Full Text PDF

Recent studies indicated severe decline of insect diversity and abundance across major parts of Central Europe. Theoretical studies showed that the drivers behind biodiversity loss vary considerably over time. However, these scenarios so far have been insufficiently approved by long-term and large-scale data.

View Article and Find Full Text PDF

The conversion of natural ecosystems due to anthropogenic activities has led to the destruction of natural habitats and to the deterioration of habitat quality. Top predators particularly respond sensitively to changes in habitat structures, including the availability of prey. The cheetah prefers small-medium-sized, wild ungulate prey due to the cheetah's morphological adaptations.

View Article and Find Full Text PDF

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with 'permeability' being measured by the area of semi-natural grasslands.

View Article and Find Full Text PDF

Species community structures shape ecosystem functions, which are mostly stronger pronounced in intact than in degraded environments. Riparian forests in semiarid Africa provide important habitats for endangered plant and animal species and provide various ecosystem functions, that is, services to people settling along these streams. Most of these riparian forests are severely disturbed by human activities and dominated by invasive exotic plant species in the meanwhile.

View Article and Find Full Text PDF

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks. The decomposition of deadwood is largely governed by climate with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood.

View Article and Find Full Text PDF

Species community structures respond strongly to habitat changes. These are either driven by nature or human activities. The biota of East African drylands responds highly sensitively to natural and anthropogenic impacts.

View Article and Find Full Text PDF

Climate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts.

View Article and Find Full Text PDF

Warm-adapted species survived the cold stages of the past glacial-interglacial cycles in southern European peninsulas and recolonized major parts of Central and Northern Europe in the wake of postglacial warming. However, many of the genetic lineages which differentiated within these refugia predate even the Pleistocene. One of these refugia is the Italian Peninsula with its surrounding islands.

View Article and Find Full Text PDF

The number of insect species and insect abundances decreased severely during the past decades over major parts of Central Europe. Previous studies documented declines of species richness, abundances, shifts in species composition, and decreasing biomass of flying insects. In this study, we present a standardized approach to quantitatively and qualitatively assess insect diversity, biomass, and the abundance of taxa, in parallel.

View Article and Find Full Text PDF

Recent reports of local extinctions of arthropod species, and of massive declines in arthropod biomass, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another.

View Article and Find Full Text PDF

Current studies have shown a severe general decline in insect species diversity, their abundance, and a biomass reduction of flying insects. Most of previous studies have been performed at single sites, or were spatially restricted at the landscape level. In this study, we analyse trends of species richness and shifts in species composition of butterflies and burnet moth species across the federal state of Baden-Württemberg in south-western Germany, covering an area of 35,750 km.

View Article and Find Full Text PDF

Species composition strongly depends on time, place and resources. In this context, semi-natural grasslands belong to the most species-rich habitats of Europe, and succession may eventually cause local extinction of typical grassland species, but conversely increase species richness due to habitat diversification. Here, we analyse potential effects of succession of calcareous grasslands on moths.

View Article and Find Full Text PDF

Pleistocene glaciations had significant effects on the distribution and evolution of species inhabiting the Holarctic region. Phylogeographic studies concerning the entire region are still rare. Here, we compared global phylogeographic patterns of one boreo-montane and one boreo-temperate butterflies with largely overlapping distribution ranges across the Northern Hemisphere, but with different levels of range fragmentation and food specialization.

View Article and Find Full Text PDF

Habitat demands and species mobility strongly determine the occurrence of species. Sedentary species with specific habitat requirements are assumed to occur more patchy than mobile habitat generalist species, and thus suffer stronger under habitat fragmentation and habitat deterioration. In this study we measured dispersal and habitat preference of three selected butterfly species using mark-release-recapture technique.

View Article and Find Full Text PDF

Background: Spatial isolation, diverging environmental conditions and social structures may lead to the differentiation of various traits, e.g. molecules, morphology and behaviour.

View Article and Find Full Text PDF

The theory of island biogeography predicts the effects of habitat isolation and size on species richness, community assembly, and the persistence of species. Various studies showed that habitat conditions and the ecology of species are also of relevance in explaining community assembly. Geographically isolated habitats like caves with rather constant environmental conditions provide models to test for the relevance of the above described variables.

View Article and Find Full Text PDF

Rapid fragmentation and degradation of large undisturbed habitats constitute major threats to biodiversity. Several studies have shown that populations in small and highly isolated habitat patches are prone to strong environmental and demographic stochasticity and increased risk of extinction. Based on community assembly theory, we predict recent rapid forest fragmentation to cause a decline in species and functional guild richness of forest birds combined with a high species turnover among habitat patches, and well defined dominance structures, if competition is the major driver of community assembly.

View Article and Find Full Text PDF

The white-eye birds of the genus have been recognized for their high speciation rates in the past, but the relationships of the East African populations are not yet fully resolved. We sequenced and annotated mitogenomes of four populations currently assigned to three East African white-eye species, , and . For specimens from two distant populations were sequenced; for the other taxa we used samples collected at one site.

View Article and Find Full Text PDF

Classical Sanger sequencing is still frequently used to generate sequence data for phylogenetic and phylogeographic inference. In this contribution we present a novel approach to genotype whole mitogenomic haplotypes using Illumina MiSeq reads from indexed amplicons. Our new approach reduces preparation time by multiplexing loci within a single or few PCR reactions and by plate format library construction.

View Article and Find Full Text PDF

Riparian thickets of East Africa harbor a large number of endemic animal and plant species, but also provide important ecosystem services for the human being settling along streams. This creates a conflicting situation between nature conservation and land-use activities. Today, most of this former pristine vegetation is highly degraded and became replaced by the invasive exotic Lantana camara shrub species.

View Article and Find Full Text PDF

Species distribution patterns range from highly disjunct to continuous, depending on their ecological demands and the availability of respective habitats. East African savannahs are mostly interconnected and ecologically comparatively homogenous and thus provide a prerequisite for a rather panmictic distribution pattern for species occurring in this habitat. The Abyssinian white-eye Zosterops abyssinicus is a savannah inhabiting bird species, representing such a continuous distribution.

View Article and Find Full Text PDF