Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly.
View Article and Find Full Text PDFhTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone methylation or tubulin tyrosination in vitro, as might be expected from the lack of critical amino acids in its SET-like and TTLL-like domains.
View Article and Find Full Text PDFProstate cancer is a common cause of death, and an important goal is to establish the pathways and functions of causative genes. We isolated RNAs that are differentially expressed in macrodissected prostate cancer samples. This study focused on 1 identified gene, TTLL12, which was predicted to modify tubulins, an established target for tumor therapy.
View Article and Find Full Text PDFVaccinia virus vectors are attractive tools to direct high level protein synthesis in mammalian cells. In one of the most efficient strategies developed so far, the gene to be expressed is positioned downstream of a bacteriophage T7 promoter within the vaccinia genome and transcribed by the T7 RNA polymerase, also encoded by the vaccinia virus genome. Tight regulation of transcription and efficient translation are ensured by control elements of the Escherichia coli lactose operon and the encephalomyocarditis virus leader sequence, respectively.
View Article and Find Full Text PDFIMP2 (insulin-like growth factor-II mRNA binding protein 2) is an oncofetal protein that is aberrantly expressed in several types of cancer. We recently identified the Imp2 gene as a target gene of the architectural transcription factor HMGA2 (high mobility group A2) and its tumor-specific truncated form HMGA2Tr. In this study, we investigated the mechanism via which HMGA2 regulates Imp2 gene expression.
View Article and Find Full Text PDFThe developmentally regulated architectural transcription factor, high mobility group A2 (HMGA2), is involved in growth regulation and plays an important role in embryogenesis and tumorigenesis. Little is known, however, about its downstream targets. We performed a search for genes of which expression is strongly altered during embryonic development in two HMGA2-deficient mouse strains, which display a pygmy-phenotype, as compared to wild-type mice.
View Article and Find Full Text PDF