Popularity of hyaluronan (HA) in the cosmetics and pharmaceutical industries, led to the investigation and development of new HA-based materials, with enzymes playing a key role. Beta-D-glucuronidases catalyze the hydrolysis of a beta-D-glucuronic acid residue from the non-reducing end of various substrates. However, lack of specificity towards HA for most beta-D-glucuronidases, in addition to the high cost and low purity of those active on HA, have prevented their widespread application.
View Article and Find Full Text PDFare of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria.
View Article and Find Full Text PDFMicroorganisms
September 2021
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript () that affects both development and antibiotic production in . Its expression is enhanced during the transition to stationary phase.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
November 2021
Objectives: Stroke predominantly affects the elderly. Universities of the Third Age (U3A) are presented with an opportunity to target them. The goal of our study was to improve older adults' preparedness to call 911 as a response to symptoms of stroke.
View Article and Find Full Text PDFStreptomycetes, typical soil dwellers, can be detected as common colonizers of human bodies, especially the skin, the respiratory tract, the guts and the genital tract using molecular techniques. However, their clinical manifestations and isolations are rare. Recently they were discussed as possible "coaches" of the human immune system in connection with certain immune disorders and cancer.
View Article and Find Full Text PDFMandibular/alveolar (m/a) bone, as a component of the periodontal apparatus, allows for the proper tooth anchorage and function of dentition. Bone formation around the tooth germs starts prenatally and, in the mouse model, the mesenchymal condensation turns into a complex vascularized bone (containing osteo-blasts, -cytes, -clasts) within only two days. This very short but critical period is characterized by synchronized cellular and molecular events.
View Article and Find Full Text PDFTuftelin was originally discovered and mostly studied in the tooth, but later found also in other organs. Despite its wide distribution among tissues, tuftelin's function has so far been specified only in the formation of enamel crystals. Nevertheless, in many cases, tuftelin was suggested to be associated with cellular adaptation to hypoxia and recently even with cell differentiation.
View Article and Find Full Text PDFThe mandible is a tooth-bearing structure involving one of the most prominent bones of the facial region. Mesenchymal cell condensation is the first morphological sign of osteogenesis, and several studies have focused on this stage also in the mandible. Little information is available about the early post-condensation period, during which avascular soft condensation turns into vascularized bone, and all three major bone cell types, osteoblasts, osteocytes, and osteoclasts, differentiate.
View Article and Find Full Text PDFNucleic Acids Res
January 2019
HrdB in streptomycetes is a principal sigma factor whose deletion is lethal. This is also the reason why its regulon has not been investigated so far. To overcome experimental obstacles, for investigating the HrdB regulon, we constructed a strain whose HrdB protein was tagged by an HA epitope.
View Article and Find Full Text PDF-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In , the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in have found a number of asRNAs.
View Article and Find Full Text PDFSpore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before.
View Article and Find Full Text PDFFront Microbiol
November 2017
The complex development undergone by encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life - connected with spore formation and antibiotic production - is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap.
View Article and Find Full Text PDFBackground: Bacterial spore germination is a developmental process during which all required metabolic pathways are restored to transfer cells from their dormant state into vegetative growth. Streptomyces are soil dwelling filamentous bacteria with complex life cycle, studied mostly for they ability to synthesize secondary metabolites including antibiotics.
Results: Here, we present a systematic approach that analyzes gene expression data obtained from 13 time points taken over 5.
Appl Microbiol Biotechnol
August 2014
The aim of this study was to contribute to clarifying the role of 6S RNA in the development and control of antibiotic biosynthesis in Streptomyces coelicolor. Due to the low energetic cost of gene silencing via 6S RNA, it is an easy and rapid means of down-regulating the expression of specific genes in response to signals from changes in the environment. The expression of 6S RNA in S.
View Article and Find Full Text PDFStreptomycetes have been studied mostly as producers of secondary metabolites, while the transition from dormant spores to an exponentially growing culture has largely been ignored. Here, we focus on a comparative analysis of fluorescently and radioactively labeled proteome and microarray acquired transcriptome expressed during the germination of Streptomyces coelicolor. The time-dynamics is considered, starting from dormant spores through 5.
View Article and Find Full Text PDFAn example of bacterium, which undergoes a complex development, is the genus of Streptomyces whose importance lies in their wide capacity to produce secondary metabolites, including antibiotics. In this work, a proteomic approach was applied to the systems study of germination as a transition from dormancy to the metabolically active stage. The protein expression levels were examined throughout the germination time course, the kinetics of the accumulated and newly synthesized proteins were clustered, and proteins detected in each group were identified.
View Article and Find Full Text PDFNon-coding RNAs (ncRNAs) are regulatory molecules encoded in the intergenic or intragenic regions of the genome. In prokaryotes, biocomputational identification of homologs of known ncRNAs in other species often fails due to weakly evolutionarily conserved sequences, structures, synteny and genome localization, except in the case of evolutionarily closely related species. To eliminate results from weak conservation, we focused on RNA structure, which is the most conserved ncRNA property.
View Article and Find Full Text PDFThe occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27).
View Article and Find Full Text PDFStreptomycetes are soil microorganisms with the potential to produce a broad spectrum of secondary metabolities. The production of antibiotics is accompanied by a decrease in protein synthesis, which raises the question of how these bacteria survived the transition from the primary to the secondary metabolism. Translating ribosomes incapable to properly elongate or terminate polypeptide chain activate bacterial trans-translation system.
View Article and Find Full Text PDFIn bacteria, small RNAs (sRNAs) make important regulatory contributions to an ever increasing number of cellular processes. To expand the repertoire of known sRNAs, we sought to identify novel sRNAs in the differentiating, multicellular bacterium Streptomyces coelicolor. We describe a combined bioinformatic and experimental approach that enabled the identification and characterization of nine novel sRNAs in S.
View Article and Find Full Text PDFBackground: The first systematic study of small non-coding RNAs (sRNA, ncRNA) in Streptomyces is presented. Except for a few exceptions, the Streptomyces sRNAs, as well as the sRNAs in other genera of the Actinomyces group, have remained unstudied. This study was based on sequence conservation in intergenic regions of Streptomyces, localization of transcription termination factors, and genomic arrangement of genes flanking the predicted sRNAs.
View Article and Find Full Text PDFTransfer-messenger RNA (tmRNA, 10Sa RNA, ssrA) is bacterial RNA having both tRNA and mRNA properties and playing an essential role in recycling of 70S ribosomes that are stalled on defective mRNA. The trans-translational system is thought to play a crucial role in bacterial survival under adverse conditions. Streptomycetes are Gram-positive soil bacteria exposed to various physical and chemical stresses that activate specialized responses such as synthesis of antibiotics and morphological differentiation.
View Article and Find Full Text PDFSynchronously germinating aerial spores of Streptomyces granaticolor were used to study protein activation and expression during the transition from dormant to metabolically active vegetative forms. The first phase of protein activation is associated with the solubility of proteins. Three major chaperones, DnaK, Trigger factor, and GroEL, were identified in spores.
View Article and Find Full Text PDFDormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication.
View Article and Find Full Text PDF