Publications by authors named "Jan Benda"

We study the impact of bursts on spike statistics and neural signal transmission. We propose a stochastic burst algorithm that is applied to a burst-free spike train and adds a random number of temporally-jittered burst spikes to each spike. This simple algorithm ignores any possible stimulus-dependence of bursting but allows to relate spectra and signal-transmission characteristics of burst-free and burst-endowed spike trains.

View Article and Find Full Text PDF

Beats are slow periodic amplitude modulations resulting from the superposition of two spectrally close periodic signals. The difference frequency between the signals sets the frequency of the beat. A field study in the electric fish showed the behavioral relevance of very high difference frequencies.

View Article and Find Full Text PDF

Introduction: Clinically relevant mutations to voltage-gated ion channels, called channelopathies, alter ion channel function, properties of ionic currents, and neuronal firing. The effects of ion channel mutations are routinely assessed and characterized as loss of function (LOF) or gain of function (GOF) at the level of ionic currents. However, emerging personalized medicine approaches based on LOF/GOF characterization have limited therapeutic success.

View Article and Find Full Text PDF

Gaussian noise is an important stimulus for the study of biological systems, especially sensory and neural systems. Since these systems are inherently nonlinear, the properties of the noise strongly influence the outcome of the analysis. Therefore, it is crucial to use a well-defined and controlled noise stimulus.

View Article and Find Full Text PDF

Recent technological advances greatly improved the possibility to study freely behaving animals in natural conditions. However, many systems still rely on animal-mounted devices, which can already bias behavioral observations. Alternatively, animal behaviors can be detected and tracked in recordings of stationary sensors, e.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional Na1.1 haploinsufficiency in inhibitory interneurons. Recently, a new conditional mouse model expressing the recurrent human p.

View Article and Find Full Text PDF

Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in , the gene coding for K1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia.

View Article and Find Full Text PDF

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability).

View Article and Find Full Text PDF

Animals across species compete for limited resources. Whereas in some species competition behavior is solely based on the individual's own abilities, other species assess their opponents to facilitate these interactions. Using cues and communication signals, contestants gather information about their opponent, adjust their behavior accordingly, and can thereby avoid high costs of escalating fights.

View Article and Find Full Text PDF
Neural adaptation.

Curr Biol

February 2021

The term 'neural adaptation' refers to the common phenomenon of decaying neuronal activities in response to repeated or prolonged stimulation. Many different roles of adaptation in neural computations have been discussed. On a single-cell level adaptation introduces a high-pass filter operation as a basic element for predictive coding.

View Article and Find Full Text PDF

Locking of neural firing is ubiquitously observed in the brain and occurs when neurons fire at a particular phase or in synchronization with an external signal. Here we study in detail the locking of single neurons to multiple distinct frequencies at the example of p-type electroreceptor afferents in the electrosensory system of the weakly electric fish (brown ghost knifefish). We find that electrosensory afferents and pyramidal cells in the electrosensory lateral line lobe (ELL) lock to multiple frequencies, including the electric organ discharge (EOD) frequency, beat, and stimulus itself.

View Article and Find Full Text PDF

Field studies on freely behaving animals commonly require tagging and often are focused on single species. Weakly electric fish generate a species- and individual-specific electric organ discharge (EOD) and therefore provide a unique opportunity for individual tracking without tagging. Here, we present and test tracking algorithms based on recordings with submerged electrode arrays.

View Article and Find Full Text PDF

Electrocommunication and -localization behaviors of weakly electric fish have been studied extensively in the lab, mostly by means of short-term observations on constrained fish. Far less is known about their behaviors in more natural-like settings, where fish are less constrained in space and time. We tracked individual fish in a population of fourteen brown ghost knifefish () housed in a large 2 m indoor tank based on their electric organ discharges (EOD).

View Article and Find Full Text PDF

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations.

View Article and Find Full Text PDF

Sensory systems evolve in the ecological niches that each species is occupying. Accordingly, encoding of natural stimuli by sensory neurons is expected to be adapted to the statistics of these stimuli. For a direct quantification of sensory scenes, we tracked natural communication behavior of male and female weakly electric fish, , in their Neotropical rainforest habitat with high spatiotemporal resolution over several days.

View Article and Find Full Text PDF

We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance.

View Article and Find Full Text PDF

Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes.

View Article and Find Full Text PDF

Weakly electric fish use electrosensory, visual, olfactory and lateral line information to guide foraging and navigation behaviors. In many cases they preferentially rely on electrosensory cues. Do fish also memorize non-electrosensory cues? Here, we trained individuals of gymnotiform weakly electric fish Apteronotus albifrons in an object discrimination task.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

Rapidly adapting (RA) currents expressed in dorsal root ganglia somatosensory neurons reduce their amplitude in response to prolonged and/or repeated mechanical stimulation. Both inactivation of mechanotransducer channels and adaptation of the force acting on the channels have been suggested to independently decrease RA currents. However, these two mechanisms have similar kinetics and dependence on calcium and voltage.

View Article and Find Full Text PDF

The senses of animals are confronted with changing environments and different contexts. Neural adaptation is one important tool to adjust sensitivity to varying intensity ranges. For instance, in a quiet night outdoors, our hearing is more sensitive than when we are confronted with the plurality of sounds in a large city during the day.

View Article and Find Full Text PDF

Hearing in insects serves to gain information in the context of mate finding, predator avoidance or host localization. For these goals, the auditory pathways of insects represent the computational substrate for object recognition and localization. Before these higher level computations can be executed in more central parts of the nervous system, the signals need to be preprocessed in the auditory periphery.

View Article and Find Full Text PDF

Extracting complementary features in parallel pathways is a widely used strategy for a robust representation of sensory signals. Weakly electric fish offer the rare opportunity to study complementary encoding of social signals in all of its electrosensory pathways. Electrosensory information is conveyed in three parallel pathways: two receptor types of the tuberous (active) system and one receptor type of the ampullary (passive) system.

View Article and Find Full Text PDF

Although communication signals often vary continuously on the underlying signal parameter, they are perceived as distinct categories. We here report the opposite case where an electrocommunication signal is encoded in four distinct regimes, although the behavior described to date does not show distinct categories. In particular, we studied the encoding of chirps by P-unit afferents in the weakly electric fish Apteronotus leptorhynchus.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1e69ibh5is28hmcbuqt03k1nndp6nere): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once